【題目】已知橢圓 的左、右焦點(diǎn)分別為F1、F2 , 短軸兩個(gè)端點(diǎn)為A、B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓的方程;
(2)若C、D分別是橢圓長的左、右端點(diǎn),動(dòng)點(diǎn)M滿足MD⊥CD,連接CM,交橢圓于點(diǎn)P.證明: 為定值.
(3)在(2)的條件下,試問x軸上是否存異于點(diǎn)C的定點(diǎn)Q,使得以MP為直徑的圓恒過直線DP、MQ的交點(diǎn),若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】
(1)解:a=2,b=c,a2=b2+c2,∴b2=2;

∴橢圓方程為


(2)解:C(﹣2,0),D(2,0),設(shè)M(2,y0),P(x1,y1),

直線CM: ,代入橢圓方程x2+2y2=4,

∵x1=﹣ ,∴ ,∴ ,∴

(定值)


(3)解:設(shè)存在Q(m,0)滿足條件,則MQ⊥DP

則由 ,從而得m=0

∴存在Q(0,0)滿足條件


【解析】(1)由題意知a=2,b=c,b2=2,由此可知橢圓方程為 .(2)設(shè)M(2,y0),P(x1 , y1), ,直線CM: ,代入橢圓方程x2+2y2=4,得 ,然后利用根與系數(shù)的關(guān)系能夠推導(dǎo)出 為定值.(3)設(shè)存在Q(m,0)滿足條件,則MQ⊥DP. ,再由 ,由此可知存在Q(0,0)滿足條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(Ⅰ)若函數(shù)處有極小值,求的值;

(Ⅱ)若,設(shè),求證:當(dāng)時(shí),

(Ⅲ)若,對(duì)于給定,其中,若.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= x3﹣2ax2﹣3x(a∈R). (Ⅰ)若f(x)在區(qū)間(﹣1,1)內(nèi)為減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)對(duì)于實(shí)數(shù)a的不同取值,試討論y=f(x)在(﹣1,1)內(nèi)的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M、N分別是EF、BC的中點(diǎn),AB=2AF=2,∠CBA=60°.

(1)求證:AN⊥DM;
(2)求直線MN與平面ADEF所成的角的正切值;
(3)求三棱錐D﹣MAN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

(I)求的解析式及單調(diào)遞減區(qū)間;

(II)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意恒成立?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系 中,以原點(diǎn) 為極點(diǎn),以 軸正半軸為極軸,建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 ,曲線 的參數(shù)方程為
(1)求曲線 的直角坐標(biāo)方程與曲線 的普通方程;
(2)試判斷曲線 是否存在兩個(gè)交點(diǎn)?若存在,求出兩交點(diǎn)間的距離;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

(Ⅰ)如圖,以過原點(diǎn)的直線的傾斜角θ為參數(shù),求圓x2y2x=0的參數(shù)方程;

(Ⅱ)在平面直角坐標(biāo)系中,已知直線l的參數(shù)方程為 (s為參數(shù)),曲線C的參數(shù)方程為 (t為參數(shù)),若lC相交于AB兩點(diǎn),求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點(diǎn),且直線恰好通過橢圓的右焦點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)經(jīng)過的直線和橢圓交于兩點(diǎn),交拋物線于兩點(diǎn), 是拋物線的焦點(diǎn),是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).(的圖象連續(xù)不斷)

(1) 的單調(diào)區(qū)間;

(2) 當(dāng)時(shí),證明:存在,使;

(3) 若存在屬于區(qū)間,且,使,證明:

查看答案和解析>>

同步練習(xí)冊答案