(本小題滿分14分)
已知方程.
(1)若此方程表示圓,求的取值范圍;
(2)若(1)中的圓與直線相交于兩點,且(為坐標原點)求的值;
(3)在(2)的條件下,求以為直徑的圓的方程.
(1)(2) (3)

試題分析:解:(1)

                           …………3分
(2)設,由
得:
由韋達定理得:

即:
                                                     …………10分
(3)設圓心為則:
半徑
圓的方程為.                            …………14分
點評:解決該試題的關鍵是利用聯(lián)立方程組得到根與系數(shù)的關系,同時結合向量的數(shù)量積為零來表示垂直,得到方程,求解結論,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓經過點,且圓心在直線上,則圓的方程為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓與直線都相切,圓心在直線上,則圓的方程為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

為圓的弦AB的中點, 則直線AB的方程為           。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在平面直角坐標系xOy中,曲線y=x2-2x—3與兩條坐標軸的三個交點都在圓C上.若圓C與直線x-y+a=0交于A,B兩點,
(1)求圓C的方程;
(2)若,求a的值;
(3)若 OA⊥OB,(O為原點),求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
如圖,AB是O的直徑,BE為圓0的切線,點c為o 上不同于A、B的一點,AD為的平分線,且分別與BC 交于H,與O交于D,與BE交于E,連結BD、CD.

(I )求證:BD平分
(II)求證:AH.BH=AE.HC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以點(-3,4)為圓心且與軸相切的圓的標準方程是 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若圓關于直線對稱,則的最小值是(   )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分8分)求過點A(2,-1),且和直線x-y=1相切,圓心在直線y=-2x上的圓的方程.

查看答案和解析>>

同步練習冊答案