16.已知f(x)=x+$\frac{2}{x}$,則曲線f(x)在點(diǎn)(1,f(1))處的切線方程為( 。
A.2x-y+1=0B.x-y-4=0C.x+y-2=0D.x+y-4=0

分析 求出f′(x),由題意可知曲線在點(diǎn)(1,f(1))處的切線方程的斜率等于f′(1),所以把x=1代入到f′(x)中即可求出f′(1)的值,得到切線的斜率,然后把x=1和f′(1)的值代入到f(x)中求出切點(diǎn)的縱坐標(biāo),根據(jù)切點(diǎn)坐標(biāo)和斜率直線切線的方程即可.

解答 解:∵f(1)=3,f′(x)=1-$\frac{2}{{x}^{2}}$,
∴f′(1)=-1,
∴所求的切線方程為:y-3=-(x-1),即x+y-4=0.
故選:D.

點(diǎn)評(píng) 此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求過(guò)曲線上某點(diǎn)切線方程的斜率,會(huì)根據(jù)一點(diǎn)和斜率寫(xiě)出直線的方程,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.記A=$\left\{{\left.x\right|y=\sqrt{2-\frac{x+3}{x+1}}}\right\}$,B={x|(x-a-1)(2a-x)>0}(a<1).
(1)求A;
(2)若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若函數(shù)$f(x)=\frac{ax+1}{x+2}$在區(qū)間(-2,+∞)上單調(diào)遞增,則a的取值范圍是( 。
A.a≤0B.$a>\frac{1}{2}$C.a≥0D.$a<\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=3,AD=4,AB=5,由A在表面到達(dá)C1的最短行程為( 。
A.12B.$\sqrt{74}$C.$\sqrt{80}$D.$3\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=(x-a)lnx,(a≥0).
(1)當(dāng)a=0時(shí),若直線y=2x+m與函數(shù)y=f(x)的圖象相切,求m的值;
(2)若f(x)在[1,2]上是單調(diào)減函數(shù),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若f(x)=x4+3x3+x+1,用秦九韶算法計(jì)算f(π)時(shí),需要乘法m次,加法n次,則m+n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若數(shù)列{bn}滿足:n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.
(1)若cn=$\left\{\begin{array}{l}{4n-1當(dāng)n為奇數(shù)時(shí)}\\{4n+9當(dāng)n為偶數(shù)時(shí)}\end{array}\right.$,求準(zhǔn)等差數(shù)列{cn}的公差,并求{cn}的前19項(xiàng)的和T19; 
(2)設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n
①求證:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式;
②設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,試研究:是否存在實(shí)數(shù)a,使得數(shù)列{Sn}有連續(xù)的兩項(xiàng)都等于50?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知直線l:ax+2y+3=0和圓C:(x-2)2+(y+3)2=4,且直線l和直線2x-y+5=0垂直.
(1)求實(shí)數(shù)a; 
(2)若直線l與圓C交于點(diǎn)A、B,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若(1+2x)6的展開(kāi)式中的第2項(xiàng)大于它的相鄰兩項(xiàng),則x的取值范圍是( 。
A.$\frac{1}{12}$<x<$\frac{1}{5}$B.$\frac{1}{6}$<x<$\frac{1}{5}$C.$\frac{1}{12}$<x<$\frac{2}{3}$D.$\frac{1}{6}$<x<$\frac{2}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案