函數(shù)y=
x+1
lnx
的定義域?yàn)?!--BA-->
{x|x>o且x≠1}
{x|x>o且x≠1}
分析:函數(shù)式是分式,分子含有根式,分母含有對數(shù)式,函數(shù)的定義域是使根式內(nèi)的代數(shù)式大于等于0,且分母不等于0,還要使對數(shù)函數(shù)有意義.
解答:解:要使原函數(shù)有意義,則需
x+1≥0
x>0
x≠1
解得:x>0且x≠1,
所以原函數(shù)的定義域?yàn)閧x|x>0,且x≠1}.
故答案為{x|x>0,且x≠1}.
點(diǎn)評:本題考查了函數(shù)的定義域及其求法,屬于以函數(shù)的定義為平臺,求集合的交集的基礎(chǔ)題,也是高考常會考的題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①命題p:?x∈R,sin≤1,則¬p:?x∈R,sinx<1,
②當(dāng)a≥1時(shí),不等式|x-4|+|x-3|<a的解集為非空;
③當(dāng)x>1時(shí),有l(wèi)nx+
1
lnx
≥2
④設(shè)有五個(gè)函數(shù).y=x,y=x
1
2
,y=x3,y=x2,y=2x
,其中既是偶函數(shù)又在(0,+∞) 上是增函數(shù)的有2個(gè).
其中真命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①△ABC中,A>B是sinA>sinB成立的充要條件;
②當(dāng)x>0且x≠1時(shí),有lnx+
1
lnx
≥2
;
③已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若S7>S5,則S9>S3
④若函數(shù)y=f(x-
3
2
)
為R上的奇函數(shù),則函數(shù)y=f(x)的圖象一定關(guān)于點(diǎn)F(
3
2
,0)
成中心對稱.
⑤函數(shù)f(x)=cos3x+sin2x-cosx(x∈R)有最大值為2,有最小值為0.
其中所有正確命題的序號為
①,③
①,③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①命題p:?x∈R,sinx≤1,則¬p:?x∈R,sinx<1;
②當(dāng)x>1時(shí),有1nx+
1
lnx
≥2

③函數(shù)f(x)=
lnx-x2+2x,(x>0)
2x+1,(x≤0)
的零點(diǎn)個(gè)數(shù)有3個(gè);
④設(shè)有五個(gè)函數(shù)y=x-1,y=x
1
2
,y=x3,y=x2,y=2|x|
,其中既是偶函數(shù)又在(0,+∞)上是增函數(shù)的有2個(gè).
其中真命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=
x+1
lnx
的定義域?yàn)開_____.

查看答案和解析>>

同步練習(xí)冊答案