已知數(shù)列{an}的前n項和為Sn,a1=1,數(shù)列{an+Sn}是公差為2的等差數(shù)列.
(Ⅰ)求a2,a3;
(Ⅱ)證明數(shù)列{an-2}為等比數(shù)列;
(Ⅲ)求數(shù)列{nan}的前n項和Tn
【答案】分析:(Ⅰ)由數(shù)列{an+Sn}是公差為2的等差數(shù)列,可得an+sn=2n,代入求a2,a3
(Ⅱ)利用遞推公式an=代換sn,證明為一非零常數(shù)
(Ⅲ)用錯位相減求數(shù)列的前n項和
解答:(Ⅰ)解:∵數(shù)列{an+Sn}是公差為2的等差數(shù)列,
∴(an+1+Sn+1)-(an+Sn)=2,即,(3分)
∵a1=1,∴;(5分)
(Ⅱ)證明:由題意,得a1-2=-1,∵,
∴{an-2}是首項為-1,公比為的等比數(shù)列;(9分)
(Ⅲ)解:由(Ⅱ)得,∴,(10分)
,
,

,②
由①-②,得,
,∴
.(14分)
點評:本題綜合考查了利用遞推公式求通項、采用構造證明等比數(shù)列及運用錯位相減求數(shù)列的和.熟練掌握公式,靈活轉化是解題的關鍵,還要具備綜合論證推理的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案