已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的上頂點為A(0,1),過C1的焦點且垂直長軸的弦長軸的弦長為1.
(1)求橢圓C1的方程;
(2)設(shè)圓O:x2+y2=
4
5
,過該圓上任意一點作圓的切線l,試證明l和橢圓C1恒有兩個交點A,B,且有
OA
OB
=0
;
(3)在(2)的條件下求弦AB長度的取值范圍.
依題意有
b=1
2b2
a
=1
?
a=2
b=1

(1)C1
x2
4
+y2=1


(2)由
x2
4
+y2=1
,且半徑r=
2
5
5
<1
,所以圓O必在橢圓內(nèi)部,
所以過該圓上任意一點作切線必與橢圓恒有兩個交點.
設(shè)切點坐標(biāo)為(x0,y0),A(x1,y1),B(x2,y2),
則切線方程為x0x+y0y=
4
5
(1),
又由(1)知C1
x2
4
+y2=1
(2)
聯(lián)立(1)(2)得:(
y20
+4
x20
)
x
-
32
5
x0x-4
y20
+
64
25
=0
x1x2=
64
25
-4
y20
y20
+4
x20
x1+x2=
32
5
x20
y20
+4
x20
,
y1=
4
5
-x0
x 1
y0
,y2=
4
5
-x0
x 2
y0
y1y2=
16
25
-4
x20
y20
+4
x20

所以,欲證
OA
OB
=0
,即證:x1x2+y1y2=0,
因為:x1x2+y1y2=
64
25
-4
y20
y20
+4
x20
+
16
25
-4
x20
y20
+4
x20
=
80
25
-4(
x20
+
y20
)
y20
+4
x20
=
80
25
-4×
4
5
y20
+4
x20
=0

所以,
OA
OB
=0
命題成立.

(3)設(shè)∠A=θ,則∠B=90°-θ,OD=r=
2
5
5
BD=
OD
tan(900-θ)
,AD=
OD
tanθ
,
AB=
OD
tan(900-θ)
+
OD
tanθ
=OD•(tanθ+
1
tanθ
)=
2
5
5
,
所以O(shè)A∈[1,2],OD=
2
5
5
,所以sinθ=
OD
OA
∈[
5
5
2
5
5
]
,又θ為銳角,
所以tanθ∈[
1
2
,2]
,則有tanθ+
1
tanθ
∈[2,
5
2
]
,所以AB∈[
4
5
5
,
5
]
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,其中F2也是拋物線C2:y2=4x的焦點,M是C1與C2在第一象限的交點,且|MF2|=
5
3

(1)求橢圓C1的方程;
(2)已知菱形ABCD的頂點A,C在橢圓C1上,對角線BD所在的直線的斜率為1.
①當(dāng)直線BD過點(0,
1
7
)時,求直線AC的方程;
②當(dāng)∠ABC=60°時,求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的一條準(zhǔn)線方程是x=
25
4
,其左、右頂點分別是A、B;雙曲線C2
x2
a2
-
y2
b2
=1
的一條漸近線方程為3x-5y=0.
(1)求橢圓C1的方程及雙曲線C2的離心率;
(2)在第一象限內(nèi)取雙曲線C2上一點P,連接AP交橢圓C1于點M,連接PB并延長交橢圓C1于點N,若
AM
=
MP
.求
MN
AB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,直線l:y=x+2
2
與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓C1的方程.
(Ⅱ)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線C2:x2-
y2
4
=1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點,若C1恰好將線段AB三等分,則b2=
0.5
0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕頭一模)已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,右頂點為A,離心率e=
1
2

(1)設(shè)拋物線C2:y2=4x的準(zhǔn)線與x軸交于F1,求橢圓的方程;
(2)設(shè)已知雙曲線C3以橢圓C1的焦點為頂點,頂點為焦點,b是雙曲線C3在第一象限上任意-點,問是否存在常數(shù)λ(λ>0),使∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案