,M、N分別是兩圓:(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為   
【答案】分析:由橢圓的方程可求得其焦點(diǎn)坐標(biāo)F1(-4,0),F(xiàn)2(4,0),而兩圓:(x+4)2+y2=1和(x-4)2+y2=1的圓心分別為兩焦點(diǎn),由于點(diǎn)P為橢圓上任意一點(diǎn),|PF1|+|PF2|=10,由圖可知,|PM|+|PN|的最小值為|PF1|+|PF2|-2;|PM|+|PN|的最大值為|PF1|+|PF2|+2;問(wèn)題可解決.
解答:解:∵橢圓方程為,∴其焦點(diǎn)坐標(biāo)為F1(-4,0),F(xiàn)2(4,0),
∴兩圓:(x+4)2+y2=1和(x-4)2+y2=1的圓心分別為F1(-4,0),F(xiàn)2(4,0),
又點(diǎn)P為橢圓上任意一點(diǎn),
∴|PF1|+|PF2|=10,
由圖可知,|PM|+|PN|的最小值為|PF1|+|PF2|-2=8;
|PM|+|PN|的最大值為|PC|+|PD|=|PF1|+|PF2|+2=12;
故答案為:8,12.
點(diǎn)評(píng):本題考查圓與圓錐曲線的綜合,關(guān)鍵在于靈活運(yùn)用橢圓的定義,著重考查數(shù)形結(jié)合的思想與分析轉(zhuǎn)化的數(shù)學(xué)思想,考查學(xué)生綜合分析與解決問(wèn)題的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2
9
+
y2
5
=1上一點(diǎn),M,N分別是兩圓:(x+2)2+y2=1和(x-2)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為(  )
A、4,8B、2,6
C、6,8D、8,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2
25
+
y2
9
=1
上一點(diǎn),M、N分別是兩圓:(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值與最大值的積為
96
96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2
25
+
y2
8
=1
上一點(diǎn),M、N分別是兩圓:(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值的分別為( 。
A、9,12B、8,11
C、8,12D、10,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2
25
+
y2
9
=1上一點(diǎn)
,M、N分別是兩圓:(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為
8,12
8,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)南市2010屆高三第二次模擬考試數(shù)學(xué)理 題型:選擇題

設(shè)P是橢圓上一點(diǎn),M,N分別是兩圓:上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為                                          (    )

       A.4,8                   B.2,6                   C.6,8                   D.8,12

 

查看答案和解析>>

同步練習(xí)冊(cè)答案