14.某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著A車和B車,同時進來C,D兩車,在C,D不相鄰的條件下,C和D至少有一輛與A和B車相鄰的概率是(  )
A.$\frac{10}{17}$B.$\frac{14}{17}$C.$\frac{9}{16}$D.$\frac{7}{9}$

分析 先求出基本事件總數(shù)n=${A}_{7}^{2}-{A}_{2}^{2}-{A}_{2}^{2}{A}_{2}^{2}-{A}_{2}^{2}$=34,C和D至少有一輛與A和B車相鄰的對立事件是C和D都不與A和B車相鄰,由此能求出C和D至少有一輛與A和B車相鄰的概率.

解答 解:某公司門前有一排9個車位的停車場,從左往右數(shù)第三個,第七個車位分別停著A車和B車,
同時進來C,D兩車,在C,D不相鄰的條件下,
基本事件總數(shù)n=${A}_{7}^{2}-{A}_{2}^{2}-{A}_{2}^{2}{A}_{2}^{2}-{A}_{2}^{2}$=34,
C和D至少有一輛與A和B車相鄰的對立事件是C和D都不與A和B車相鄰,
∴C和D至少有一輛與A和B車相鄰的概率:
p=1-$\frac{{A}_{3}^{2}}{34}$=$\frac{14}{17}$.
故選:B.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意對立事件概率計算公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點($\frac{3}{2}$,-$\frac{\sqrt{6}}{2}$),且離心率為$\frac{\sqrt{3}}{3}$.
(I)求橢圓C的標準方程;
(II)若點A(x1,y1),B(x2,y2)是橢圓C上的亮點,且x1≠x2,點P(1,0),證明:△PAB不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在平面ABCD中,AB⊥平面ADE,CD⊥平面ADE,△ADE是等邊三角形,AD=DC=2AB=2,F(xiàn),G分別為AD,DE的中點.
(Ⅰ)求證:EF⊥平面ABCD;
(Ⅱ)求四棱錐E-ABCD的體積;
(Ⅲ)判斷直線AG與平面BCE的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知p:x=1,q:x3-2x+1=0,則p是q的充分不必要條件(從“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中選出適當?shù)囊环N填空).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.運動員小王在一個如圖所示的半圓形水域(O為圓心,AB是半圓的直徑)進行體育訓練,小王先從點A出發(fā),沿著線段AP游泳至半圓上某點P處,再從點P沿著弧PB跑步至點B處,最后沿著線段BA騎自行車回到點A處,本次訓練結(jié)束.已知OA=1500m,小王游泳、跑步、騎自行車的平均速度分別為2m/s,4m/s,10m/s,設∠PAO=θrad.
(1)若$θ=\frac{π}{3}$,求弧PB的長度;
(2)試將小王本次訓練的時間t表示為θ的函數(shù)t(θ),并寫出θ的范圍;
(3)請判斷小王本次訓練時間能否超過40分鐘,并說明理由.
(參考公式:弧長l=rα,其中r為扇形半徑,α為扇形圓心角.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在五面體ABCDEF中,底面ABCD是正方形,△ADE,△BCF都是等邊三角形,EF∥AB,且EF>AB,M,O分別為EF,BD的中點,連接MO.
(Ⅰ)求證:MO⊥底面ABCD;
(Ⅱ)若EF=2AB,求二面角E-BD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.《算數(shù)書》竹簡于上世紀八十年代在湖北省張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學典籍,其中記載有求“禾蓋”的術(shù):置如其周,令相乘也.又以高乘之,三十六成一.該術(shù)相當于給出了由圓錐的底面周長L與高h,計算其體積V的近似公式V≈$\frac{1}{36}$L2h.它實際上是將圓錐體積公式中的圓周率π近似取為3.那么,近似公式V≈$\frac{7}{264}$L2h相當于將圓錐體積公式中的圓周率π近似取為( 。
A.$\frac{22}{7}$B.$\frac{25}{8}$C.$\frac{23}{7}$D.$\frac{157}{50}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(I) 已知二次函數(shù)f(x)=ax2+2bx-3a(a,b∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(II) 設f(x)=2x+m-1是定義在[-1,2]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
(III) 設f(x)=4x-m•2x+1+m2-3,若f(x)不是定義域R上的“局部奇函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在四棱錐 P-ABCD中,底面是邊長為a的正方形,側(cè)棱PD=a,PA=PC=$\sqrt{2}$a.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD.

查看答案和解析>>

同步練習冊答案