定義在R上的函數(shù)f(x)滿足f(m+n2)=f(m)+2[f(n)]2,其中m,n∈R,且f(1)≠0.則f(2013)=
4024[f(1)]2 +f(1)
4024[f(1)]2 +f(1)
分析:由于f(m+n2)=f(m)+2[f(n)]2,則得到f(2013)=f(2012+12)=f(2012)+2[f(1)]2,以此類推得到2012個類此形式的式子,累加后即可得到f(2013)的值.
解答:解:由題意知,f(2013)=f(2012+12)=f(2012)+2[f(1)]2
f(2012)=f(2011)+2[f(1)]2,
f(2011)=f(2010)+2[f(1)]2,
f(2010)=f(2009)+2[f(1)]2

f(2)=f(1)+2[f(1)]2,
故有f(2013)=f(1)+2[f(1)]2×2012=4024[f(1)]2+f(1)
故答案為 4024[f(1)]2 +f(1)
點評:本題考查求函數(shù)值的問題,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點的區(qū)間是( 。

查看答案和解析>>

同步練習冊答案