如圖15所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分別為AC,DC的中點(diǎn).
(1)求證:EF⊥BC;
(2)求二面角EBFC的正弦值.
圖15
.解:(1)證明:方法一,過(guò)點(diǎn)E作EO⊥BC,垂足為O,連接OF.由△ABC≌△DBC可證出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC.又EO⊥BC,EO∩FO=O,所以BC⊥平面EFO.又EF⊂平面EFO,所以EF⊥BC.
圖1
方法二,由題意,以B為坐標(biāo)原點(diǎn),在平面DBC內(nèi)過(guò)B作垂直BC的直線,并將其作為x軸,BC所在直線為y軸,在平面ABC內(nèi)過(guò)B作垂直BC的直線,并將其作為z軸,建立如圖所示的空間直角坐標(biāo)系,易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而E(0,,),F(,,0),所以=(,0,-),=(0,2,0),因此·=0,
從而⊥,所以EF⊥BC.
圖2
(2)方法一,在圖1中,過(guò)點(diǎn)O作OG⊥BF,垂足為G,連接EG.因?yàn)槠矫?i>ABC⊥平面BDC,所以EO⊥面BDC,又OG⊥BF,所以由三垂線定理知EG⊥BF,
因此∠EGO為二面角EBFC的平面角.
在△EOC中,EO=EC=BC·cos 30°=.
由△BGO∽△BFC知,OG=·FC=,因此tan∠EGO==2,從而得sin∠EGO=,即二面角EBFC的正弦值為.
方法二,在圖2中,平面BFC的一個(gè)法向量為n1=(0,0,1).
設(shè)平面BEF的法向量n2=(x,y,z),
又=(,,0),=(0,,),
所以得其中一個(gè)n2=(1,-,1).
設(shè)二面角EBFC的大小為θ,且由題知θ為銳角,則cos θ=|cos〈n1,n2〉|==,
因此sin θ==,即所求二面角正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在區(qū)間上隨機(jī)取一個(gè)數(shù)x,使得0<tanx<1成立的概率是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
甲、乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)記X為比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求X的分布列和均值(數(shù)學(xué)期望).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知m,n表示兩條不同直線,α表示平面.下列說(shuō)法正確的是( )
A.若m∥α,n∥α,則m∥n
B.若m⊥α,n⊂α,則m⊥n
C.若m⊥α,m⊥n,則n∥α
D.若m∥α,m⊥n,則n⊥α
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖13所示,在四棱柱ABCD A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是線段AB的中點(diǎn).
圖13
(1)求證:C1M∥平面A1ADD1;
(2)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖13所示,四棱錐PABCD中,底面是以O為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M為BC上一點(diǎn),且BM=,MP⊥AP.
(1)求PO的長(zhǎng);
(2)求二面角APMC的正弦值.
圖13
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為的正四棱柱的各頂點(diǎn)均在同一個(gè)球面上,則該球的體積為( )
A. B.4π C.2π D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖14,某人在垂直于水平地面ABC的墻面前的點(diǎn)A處進(jìn)行射擊訓(xùn)練.已知點(diǎn)A到墻面的距離為AB,某目標(biāo)點(diǎn)P沿墻面上的射線CM移動(dòng),此人為了準(zhǔn)確瞄準(zhǔn)目標(biāo)點(diǎn)P,需計(jì)算由點(diǎn)A觀察點(diǎn)P的仰角θ的大小.若AB=15 m,AC=25 m,∠BCM=30°,則tan θ的最大值是________.(仰角θ為直線AP與平面ABC所成角)
圖14
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)某項(xiàng)試驗(yàn)的成功率為失敗率的2倍,用隨機(jī)變量ξ去描述1次試驗(yàn)的成功次數(shù),則P(ξ=0)的值為( )
A.1 B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com