求函數(shù)的值域。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)寫出該函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若對所有恒成立,求實(shí)數(shù)n的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)證明函數(shù)是偶函數(shù);
(2)在如圖所示的平面直角坐標(biāo)系中作出函數(shù)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)的圖象如圖所示,且與軸相切于原點(diǎn),若函數(shù)的極小值為-4.
(1)求的值;
(2)求函數(shù)的遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是函數(shù)的兩個(gè)零點(diǎn),函數(shù)的最小值為,記
(。┰囂角之間的等量關(guān)系(不含);
(ⅱ)當(dāng)且僅當(dāng)在什么范圍內(nèi),函數(shù)存在最小值?
(ⅲ)若,試確定的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,且對恒成立.
(1)求a、b的值;
(2)若對,不等式恒成立,求實(shí)數(shù)m的取值范圍.
(3)記,那么當(dāng)時(shí),是否存在區(qū)間(),使得函數(shù)在區(qū)間上的值域恰好為?若存在,請求出區(qū)間;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)。
(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。
(2)若在上的最大值為,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),的兩個(gè)極值點(diǎn)為,線段的中點(diǎn)為.
(1) 如果函數(shù)為奇函數(shù),求實(shí)數(shù)的值;當(dāng)時(shí),求函數(shù)圖象的對稱中心;
(2) 如果點(diǎn)在第四象限,求實(shí)數(shù)的范圍;
(3) 證明:點(diǎn)也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(Ⅰ)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;
(Ⅲ)試證明:()。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com