直線y=ax+b過第一、三、四象限,則圓(x+a)2+(y+b)2=r2(r>0)的圓心在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:圓的標準方程
專題:直線與圓
分析:由已知條件直線y=ax+b過第一、三、四象限,可得a>0,b<0.從而確定圓心的位置.
解答: 解:∵直線y=ax+b過第一、三、四象限,
由一次函數(shù)圖象的性質(zhì)可得,
a>0,b<0.
而圓(x+a)2+(y+b)2=r2(r>0)的圓心坐標為(-a,-b).
∴-a<0,-b>0.
∴圓(x+a)2+(y+b)2=r2(r>0)的圓心在第二象限.
故選B.
點評:本題考查一次函數(shù)圖象的性質(zhì)以及圓的標準方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線L:3x-y-6=0被圓C:x2+y2-2x-4y=0截得的弦AB的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,a2,…a10∈(1,+∞),則
lo
g
 
a1
2009+lo
g
 
a2
2009+…+lo
g
 
a10
2009
lo
g
 
a1a2a10
2009
最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點P(3,a)到直線x+
3
y-4=0的距離為1,則a值為(  )
A、
3
B、-
3
3
C、
3
3
或-
3
D、
3
或-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:a≠1或b≠-1,命題q:a+b≠0,則p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線3x-
3
y+1=0的傾斜角是( 。
A、30°B、60°
C、45°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={(x,y)|(x+1)2+y2=1,x,y∈R},N={(x,y)|x+y-c≥0,x,y∈R},則使得M∩N=M的c的取值范圍是(  )
A、[-
2
-1,+∞)
B、(-∞,-
2
-1
]
C、[
2
+1
,+∞)
D、(-∞,-
2
+1
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一排9個座位,坐了3家法律知識比賽小組,若每個小組都是3個成員,且要求每個小組的3個成員坐在一起,則不同的坐法種數(shù)為( 。
A、3×3!
B、3×(3!)3
C、(3!)4
D、9!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,x,x2-x},B={1,2,x},若集合A與集合B相等,求x的值.

查看答案和解析>>

同步練習(xí)冊答案