15.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°,且|$\overrightarrow a$|=1,|$\overrightarrow$|=2,則|2$\overrightarrow a$+$\overrightarrow$|=( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$2\sqrt{2}$D.$2\sqrt{3}$

分析 由題意可得,$\overrightarrow{a}•\overrightarrow$=1×2×cos60°=1,再根據(jù)|2$\overrightarrow a$+$\overrightarrow$|=$\sqrt{{(2\overrightarrow{a}+\overrightarrow)}^{2}}$,計(jì)算求的結(jié)果.

解答 解:∵向量$\overrightarrow a$,$\overrightarrow b$的夾角為60°,且|$\overrightarrow a$|=1,|$\overrightarrow$|=2,∴$\overrightarrow{a}•\overrightarrow$=1×2×cos60°=1,
∴|2$\overrightarrow a$+$\overrightarrow$|=$\sqrt{{(2\overrightarrow{a}+\overrightarrow)}^{2}}$=$\sqrt{{4\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{+\overrightarrow}^{2}}$=$\sqrt{4+4+4}$=2$\sqrt{3}$,
故選:D.

點(diǎn)評 本題主要考查兩個(gè)向量的數(shù)量積的定義,求向量的模的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

設(shè)函數(shù),,若實(shí)數(shù)分別是的零點(diǎn),則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:填空題

為銳角,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax+lnx,函數(shù)g(x)=ex
(1)求f(x)的極值;
(2)若?x∈(0,+∞),使得g(x)<$\frac{x-m+3}{\sqrt{x}}$成立,試求實(shí)數(shù)m的取值范圍;
(3)當(dāng)a=0時(shí),對于?x∈(0,+∞),求證:g(x)-f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)A($\frac{1}{3}$,$\frac{2}{3}$)在橢圓E上,射線AO與橢圓E的另一交點(diǎn)為B,點(diǎn)P(-4t,t)在橢圓E內(nèi)部,射線AP、BP與橢圓E的另一交點(diǎn)分別為C,D.
(1)求橢圓E的方程;
(2)求證:直線CD的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=sinx-lg|x|的零點(diǎn)個(gè)數(shù)( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.國務(wù)院總理李克強(qiáng)在2015年4月14日的經(jīng)濟(jì)形勢座談會上就“手機(jī)流量資費(fèi)和網(wǎng)速”問題做出重要指示,工信部回應(yīng),將加大今年寬帶專項(xiàng)行動中“加快4G建設(shè)”、“大幅提升網(wǎng)速”等重點(diǎn)工作的推進(jìn)力度,為此某移動部門對部分4G手機(jī)用戶每日使用流量(單位:M)進(jìn)行統(tǒng)計(jì),得到如下記錄:
流量(x)0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
頻率0.050.25  0.30 0.25 0.15 0
將手機(jī)日使用流量統(tǒng)計(jì)到各組的頻率視為概率,并假設(shè)每天手機(jī)日使用流量相互獨(dú)立.
(Ⅰ)求某人在未來連續(xù)4天里,有連續(xù)3天的手機(jī)日使用流量都不低于15M,且另1天的手機(jī)日使用流量低于5M的概率;
(Ⅱ)用X表示某人在未來3天時(shí)間里手機(jī)日使用流量不低于15M的天數(shù),求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=cos(x+\frac{π}{6})sin(x+\frac{π}{3})-sinxcosx-\frac{1}{4}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若$b=2,f(\frac{A}{2})=0,B=\frac{π}{6}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖為全等的直角梯形,俯視圖為直角三角形則該幾何體的表面積為( 。
A.6+12$\sqrt{2}$B.16+12$\sqrt{2}$C.6+12$\sqrt{3}$D.16+12$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案