(2013•內(nèi)江二模)已知三棱柱ABC-A1B1C1的底面是邊長為
6
的正三角形,側棱垂直底面且側棱長為2,則該三棱柱的外接球表面積是
12π
12π
分析:由題意推出三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,求出球的半徑,即可求出外接球的表面積.
解答:解:∵正三棱柱ABC-A1B1C1的中,底面邊長為
6
,高為2,
由題意可得:三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,
∴正三棱柱ABC-A1B1C1的外接球的球心為O,外接球的半徑為r,表面積為:4πr2
球心到底面的距離為1,
底面中心到底面三角形的頂點的距離為:
2
3
×
3
2
×
6
=
2

所以球的半徑為r=
12+(
2
)2
=
3

外接球的表面積為:4πr2=12π
故答案為:12π.
點評:本題考查空間想象能力,計算能力;三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,是本題解題的關鍵,仔細觀察和分析題意,是解好數(shù)學題目的前提.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•內(nèi)江二模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率e=
2
3
3
,過點A(0,-b)和B(a,0)的直線與原點的距離為
3
2

(1)求雙曲線的方程;
(2)直線y=kx+m(k≠0,m≠0)與該雙曲線交于不同的兩點C、D,且C、D兩點都在以A為圓心的同一圓上,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內(nèi)江二模)如圖,在多面體ABCDEF中,ABCD為菱形,∠ABC=60°,EC⊥面ABCD,F(xiàn)A⊥面ABCD,G為BF的中點,若EG∥面ABCD.
(Ⅰ)求證:EG⊥面ABF;
(Ⅱ)若AF=AB,求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內(nèi)江二模)已知數(shù)列{an}的首項a1=5,前n項和為Sn,且Sn+1=2Sn+n+5(n∈N*
(1)證明數(shù)列{an+1}是等比數(shù)列;
(2)令f(x)=a1x+a2x2+…+anxn,求函數(shù)f(x)在點x=1處的導數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內(nèi)江二模)設集合A={x|x2+3x<0},B={x|y=
-x-1
},則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內(nèi)江二模)已知復數(shù)z=2i(2+i)(i為虛數(shù)單位),則復數(shù)z在復平面上所對應的點在( 。

查看答案和解析>>

同步練習冊答案