【題目】《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開(kāi)平方得積.”若把以上這段文字寫(xiě)成公式,即S= .現(xiàn)有周長(zhǎng)為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

【答案】A
【解析】解:因?yàn)閟inA:sinB:sinC=( ﹣1): :( +1),

所以由正弦定理得,a:b:c=( ﹣1): :( +1),

又△ABC的周長(zhǎng)為2 + ,

則a=( ﹣1)、b= 、c=( +1),

所以△ABC的面積S=

=

= = ,

故選:A.

由題意和正弦定理求出a:b:c,結(jié)合條件求出a、b、c的值,代入公式求出△ABC的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點(diǎn) (Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若直線PC與平面PAD所成角為45°,求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)f(x)有最大值M,則M的取值范圍是(
A.( ,0)
B.(0, ]
C.(0, ]
D.( , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,若這200名學(xué)生中每周的自習(xí)時(shí)間不超過(guò)m小時(shí)的人數(shù)為164,則m的值約為(
A.26.25
B.26.5
C.26.75
D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+b)+ex﹣1(a≠0).
(1)當(dāng)a=﹣1,b=1時(shí),判斷函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(2)若f(x)≤ex﹣1+x+1,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求證:BD⊥平面ADG;
(2)求此多面體的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社區(qū)新建了一個(gè)休閑小公園,幾條小徑將公園分成5塊區(qū)域,如圖,社區(qū)準(zhǔn)備從4種顏色不同的花卉中選擇若干種種植在各塊區(qū)域,要求每個(gè)區(qū)域隨機(jī)用一種顏色的花卉,且相鄰區(qū)域(用公共邊的)所選花卉顏色不能相同,則不同種植方法的種數(shù)共有(
A.96
B.114
C.168
D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x,求a,b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)定義在R上的偶函數(shù)y=f(x),滿足對(duì)任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]時(shí),f(x)= ,a=f( ),b=f( ),c=f( ),則(
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c

查看答案和解析>>

同步練習(xí)冊(cè)答案