如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD。
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值。
解:如圖,以D為坐標(biāo)原點(diǎn),線段DA的長為單位長,射線DA為x軸的正半軸建立空間直角坐標(biāo)系D-xyz
(1)依題意有Q(1,1,0),C(0,0,1),P(0,2,0)

所以
即PQ⊥DQ,PQ⊥DC
故PQ⊥平面DCQ
又PQ平面PQC,
所以平面PQC⊥平面DCQ。
(2)依題意有B(1,0,1),
設(shè)是平面PBC的法向量,則

因此可取
設(shè)m是平面PBQ的法向量,則
可取
所以
故二面角Q-BP-C的余弦值為-
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD與A′ABB′都是邊長為a的正方形,點(diǎn)E是A′A的中點(diǎn),A′A⊥平面ABCD.
(1) 求證:A′C∥平面BDE;
(2) 求證:平面A′AC⊥平面BDE
(3) 求平面BDE與平面ABCD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)證明PQ⊥平面DCQ;
(Ⅱ)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E為BC的中點(diǎn).
(1)求點(diǎn)C到面PDE的距離;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,如果它的一個(gè)外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案