【題目】如圖,設(shè)拋物線 : 的準線 與 軸交于橢圓 : 的右焦點 , 為 的左焦點.橢圓的離心率為 ,拋物線 與橢圓 交于 軸上方一點 ,連接 并延長交 于點 , 為 上一動點,且在 , 之間移動.
(1)當(dāng) 時,求 的方程;
(2)若 的邊長恰好是三個連續(xù)的自然數(shù)。求到直線距離的最大值以及此時 的坐標(biāo).
【答案】(1);(2)最大值為,此時.
【解析】
(1)根據(jù)題意得到,,則 ,,因為 ,從而求出參數(shù)值,進而得到方程;(2)聯(lián)立橢圓和拋物線得到點P的坐標(biāo),由橢圓定義得到,,,又 的邊長恰好是三個連續(xù)的自然數(shù),所以 ,此時聯(lián)立直線PQ和拋物線方程求得點Q的坐標(biāo),,設(shè)出點M的坐標(biāo)得到直線 的距離為 ,則 ,結(jié)合二次函數(shù)的特點得到最值.
(1) 因為 ,,則 ,,因為 ,所以,,
所以橢圓 的方程為 .
(2) 因為 ,,則 ,,設(shè)橢圓的標(biāo)準方程為 ,,,由 得 ,
所以 或 (舍去),代入拋物線方程得 ,
即 ,于是 ,,,
又 的邊長恰好是三個連續(xù)的自然數(shù),所以 .
此時拋物線方程為 ,,,
則直線 的方程為 ,
聯(lián)立
得 或 (舍去),
于是 ,
所以 ,
設(shè) 到直線 的距離為 ,則 ,
當(dāng) 時,,此時
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不同的直線, ,是兩個不同的平面,則下列命題中正確的是
A. 若,∥,∥, 則
B. 若,,,則
C. 若∥,, ,則
D. 若∥, ,,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓C: =1的右焦點F,過焦點F的直線l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點,C在點P處的切線為l,l與l0相交于點M,與直線l1:x=3相交于N.
(I) 求證;直線 =1是橢圓C在點P處的切線;
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請問△ONP(O為坐標(biāo)原點)的面積是否存在最小值?若存在,請求出最小及此時點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:
現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為3萬元.分別用x,y表示計劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).
(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?并求出此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第 屆夏季奧林匹克運動會將于2016年8月5日 21日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).
| 第31屆里約 | 第30屆倫敦 | 第29屆北京 | 第28屆雅典 | 第27屆悉尼 |
中國 | 26 | 38 | 51 | 32 | 28 |
俄羅斯 | 19 | 24 | 24 | 27 | 32 |
(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結(jié)論即可);
(2)下表是近五屆奧運會中國代表團獲得的金牌數(shù)之和 (從第 屆算起,不包括之前已獲得的金牌數(shù))隨時間 (時間代號)變化的數(shù)據(jù):
屆 | 27 | 28 | 29 | 30 | 31 |
時間代號(x) | 1 | 2 | 3 | 5 | |
金牌數(shù)之和(y枚) | 28 | 60 | 111 | 149 | 175 |
作出散點圖如下:
①由圖中可以看出,金牌數(shù)之和 與時間代號 之間存在線性相關(guān)關(guān)系,請求出 關(guān)于 的線性回歸方程;
②利用①中的回歸方程,預(yù)測2020年第32屆奧林匹克運動會中國代表團獲得的金牌數(shù).
參考數(shù)據(jù):,,.
附:對于一組數(shù)據(jù) ,,,,其回歸直線的斜率的最小二乘估計為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表是一個由n2個正數(shù)組成的數(shù)表,用aij表示第i行第j個數(shù)(i,j∈N),已知數(shù)表中第一列各數(shù)從上到下依次構(gòu)成等差數(shù)列,每一行各數(shù)從左到右依次構(gòu)成等比數(shù)列,且公比都相等.已知a11=1,a31+a61=9,a35=48.
(1)求an1和a4n;
(2)設(shè)bn= +(﹣1)na (n∈N+),求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:α∈R,sin(π﹣α)=cosα;命題q:“0<a<4”是“關(guān)于x的不等式ax2+ax+1>0的解集是實數(shù)集R”的充分必要條件,則下面結(jié)論正確的是( )
A.p是假命題
B.q是真命題
C.“p∧q”是假命題
D.“p∨q”是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點到其焦點的距離為4,橢圓 的離心率,且過拋物線的焦點.
(1)求拋物線和橢圓的標(biāo)準方程;
(2)過點的直線交拋物線于兩不同點,交軸于點,已知, ,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的中心為直線和直線的交點,其一邊所在直線方程為
(1)寫出正方形的中心坐標(biāo);
(2)求其它三邊所在直線的方程(寫出一般式).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com