數(shù)列的首項為,為等差數(shù)列且 .若則,則=(     )

A. 0         B.  3           C. 8               D. 11

 

【答案】

B

【解析】

試題分析:∵為等差數(shù)列且,則,∴

,∴,故,,……,累加得,所以.

考點:1、等差數(shù)列的通項公式;2、數(shù)列的遞推公式.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的首項為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項;數(shù)列{bn}滿足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)試確定t的值,使得數(shù)列{bn}為等差數(shù)列;
(3)當{bn}為等差數(shù)列時,對任意正整數(shù)k,在ak與ak+1之間插入2共bk個,得到一個新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項和,試求滿足Tn=2cm+1的所有正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項為a1=2,前n項和為Sn,且對任意的n∈N*n,≥2,an總是3Sn-4與2-
5
2
Sn-1
的等差中項.
(1)求證:數(shù)列{an}是等比數(shù)列,并求通項an;
(2)證明:
1
2
(log2Sn+log2Sn+2)<log2Sn+1
;
(3)若bn=
4
an
-1,cn=log2(
4
an
)2
,Tn,Rn分別為{bn}、{cn}的前n項和.問:是否存在正整數(shù)n,使得Tn>Rn,若存在,請求出所有n的值,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等比數(shù)列{an}的首項為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項;數(shù)列{an}滿足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)試確定實數(shù)t的值,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等比數(shù)列{an}的首項為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項;等差數(shù)列{bn}滿足2n2-(t+bn)n+
32
bn
=0(t∈R,n∈N*).
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ) 若對任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求實數(shù)λ的取值范圍;
(Ⅲ)對每個正整數(shù)k,在ak和a k+1之間插入bk個2,得到一個新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項和,試求滿足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•茂名一模)已知數(shù)列{an}的前n項和為Sn,且an是Sn與2的等差中項,而數(shù)列{bn}的首項為1,bn+1-bn-2=0.
(1)求a1和a2的值;
(2)求數(shù)列{an},{bn}的通項an和bn;
(3)設(shè)cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案