精英家教網 > 高中數學 > 題目詳情
A、B兩城相距100km,在兩地之間距A城xkm處D地建一核電站給A、B兩城供電,為保證城市安全,核電站距城市距離不得少于10km.已知供電費用與供電距離的平方和供電量之積成正比,比例系數λ=0.25,若A城供電量為20億度/月,B城為10億度/月.
(1)把兩城市月供電總費用y表示成x的函數,并求其定義域;
(2)核電站建在距A城多遠,才能使供電費用最。,結果保留一位小數)

【答案】分析:(1)A城供電費用y1=0.25×20x2,B城供電費用y2=0.25×10(100-x)2,總費用y=y1+y2,整理即可;因為核電站距A城xkm,則距B城(100-x)km;由x≥10,且100-x≥10,得x的范圍;
(2)因為函數y=7.5x2-500x+25000是二次函數,由二次函數的性質可得,x=-時,函數y取得最小值.
解答:解:(1)A城供電費用為:y1=0.25×20x2=5x2
B城供電費用為:y2=0.25×10(100-x)2=2.5x2-500x+25000;
所以總費用為:y=y1+y2=5x2+(2.5x2-500x+25000)=7.5x2-500x+25000
因為核電站距A城xkm,則距B城(100-x)km;
∴x≥10,且100-x≥10,
解得,10≤x≤90;
所以,函數的定義域是{x|10≤x≤90}.
(2)因為函數y=7.5x2-500x+25000(其中10≤x≤90),
當x=-=時,此函數取得最小值;
所以,核電站建在距A城 km處,能使A、B兩城月供電總費用最。
點評:本題考查了二次函數模型的應用,二次函數求最值時,通常考慮是否取在對稱軸x=-處,所以本題是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源:學習周報 數學 人教課標高一版(A必修1) 2009-2010學年 第10期 總166期 人教課標高一版 題型:044

A、B兩城相距100 km,在兩地之間距A城x km處的D地建一核電站給A、B兩城供電,為保證城市安全,核電站距城市不得少于10 km.已知供電費用和供電距離的平方與供電量之積成正比,比例系數λ=0.25.若A城供電量為20億度/月,B城供電量為10億度/月.

(1)把月供電總費用y表示成關于x的函數;

(2)核電站建在距A城多遠,才能使供電費用最低?

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分12分)A、B兩城相距100 km,在兩地之間距A城x (km)處建一核電站給A、B兩城供電,為保證城市安全,核電站距城市距離不得少于10km。已知供電費用等于供電距離(km)的平方與供電量(億度)之積的0.25倍,若A城供電量為每月20億度,B城為每月10億度。

 (1)求x的取值范圍;(2)把月供電總費用y表示成x的函數; (3)核電站建在距A城多遠,才能使供電總費用y最小。

查看答案和解析>>

科目:高中數學 來源:2011年廣東省東莞市教育局教研室高一上學期期末檢測數學試卷(B) 題型:解答題

(本小題滿分12分)
如圖:A、B兩城相距100 km,某天燃氣公司計劃在兩地之間建一天燃氣站D A、B兩城供氣. 已知D地距Ax km,為保證城市安全,天燃氣站距兩城市的距離均不得少于10km . 已知建設費用y (萬元)與A、B兩地的供氣距離(km)的平方和成正比,當天燃氣站D距A城的距離為40km時, 建設費用為1300萬元.(供氣距離指天燃氣站距到城市的距離)
(1)把建設費用y(萬元)表示成供氣距離x (km)的函數,并求定義域;
(2)天燃氣供氣站建在距A城多遠,才能使建設供氣費用最小.,最小費用是多少?

查看答案和解析>>

科目:高中數學 來源:2014屆山東省濟寧市高一上學期期末模擬考試數學 題型:解答題

(本小題滿分12分)如圖:A、B兩城相距100 km,某天燃氣公司計劃在兩地之間建一天燃氣站D AB兩城供氣. 已知D地距Ax km,為保證城市安全,天燃氣站距兩城市的距離均不得少于10km . 已知建設費用y (萬元)與A、B兩地的供氣距離(km)的平方和成正比,當天燃氣站D距A城的距離為40km時, 建設費用為1300萬元.(供氣距離指天燃氣站距到城市的距離)

(1)把建設費用y(萬元)表示成供氣距離x (km)的函數,并求定義域;

(2)天燃氣供氣站建在距A城多遠,才能使建設供氣費用最小.,最小費用是多少?

 

 

 

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分12分)

A、B兩城相距100 km,在兩地之間距A城x (km)處建一核電站給A、B兩城供電,為保證城市安全,核電站距城市距離不得少于10km。已知供電費用等于供電距離(km)的平方與供電量(億度)之積的0.25倍,若A城供電量為每月20億度,B城為每月10億度。

   (1)求x的取值范圍;

   (2)把月供電總費用y表示成x的函數;

   (3)核電站建在距A城多遠,才能使供電總費用y最小。

查看答案和解析>>

同步練習冊答案