1.已知隨機變量X滿足D(X)=3,則D(3X+2)=( 。
A.2B.27C.18D.20

分析 利用方差的性質(zhì)直接求解.

解答 解:∵隨機變量X滿足D(X)=3,
∴D(3X+2)=9D(X)=9×3=27.
故選:B.

點評 本題考查方差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意方差的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知奇函數(shù)y=f(x)滿足:f(x)=f(x+2),且當(dāng)x∈(0,1)時,f(x)=2x-1,則f(-4.5)=( 。
A.-2B.-1C.$-\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法中,正確的序號為( 。
(1)$\overrightarrow{AB}$+$\overrightarrow{MB}$+$\overrightarrow{BC}$+$\overrightarrow{OM}$+$\overrightarrow{CO}$=$\overrightarrow{AB}$;
(2)若$\overrightarrow{a}$•$\overrightarrow$<0,則$\overrightarrow a$與$\overrightarrow b$的夾角是鈍角;
(3)若向量$\overrightarrow{{e}_{1}}$=(2,-3),$\overrightarrow{{e}_{2}}$=($\frac{1}{2}$,-$\frac{3}{4}$)能作為平面內(nèi)所有向量的一組基底
(4)若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow a$在$\overrightarrow$上的投影為|$\overrightarrow{a}$|.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={x|y=log2(x+6)},N={x|x-4≥2},則M∩N=( 。
A.(-3,2]B.(-6,+∞)C.[6,+∞)D.[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x=log23-log2$\sqrt{3}$,y=log0.53,z=0.9-1.1,則(  )
A.x<y<zB.z<y<xC.y<z<xD.y<x<z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點P(x,y)在圓C:x2+(y-1)2=1上運動,則 $\frac{y-1}{x-2}$的取值范圍是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)集合A={(x,y)|x∈R,y∈R},點(x,y)在映射f:A→B的作用下對應(yīng)的點是(x-y,x+y),則B中點(3,2)對應(yīng)的A中點的坐標(biāo)為$(\frac{5}{2},-\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知某運動員每次投籃命中的概率都為50%.現(xiàn)采用隨機模擬的方法估計該運動員四次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定0,1,2,3,4表示命中,5,6,7,8,9表示不命中;再以每四個隨機數(shù)為一組,代表四次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):
9075   9660   1918   9257    2716    9325    8121    4589   5690    6832
4315   2573   3937   9279    5563    4882    7358    1135   1587    4989
據(jù)此估計,該運動員四次投籃恰有兩次命中的概率為(  )
A.0.40B.0.35C.0.30D.0.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|log2(x-1)<1},B={x|x2-2x-3<0},則“x∈A”是“x∈B”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案