已知函數(shù)在區(qū)間內(nèi)單調(diào),則的最大值為__________.

試題分析:求導(dǎo)得:,由此可知遞減,在內(nèi)遞增,所以的最大值為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)若,當(dāng)時,在區(qū)間內(nèi)存在極值,求整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時, (其中e是自然界對數(shù)的底,)
(1)求的解析式;
(2)設(shè),求證:當(dāng)時,且,恒成立;
(3)是否存在實(shí)數(shù)a,使得當(dāng)時,的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)當(dāng)時,若存在, 使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
(1)當(dāng)a=-1時,求曲線y=f(x)在x=1處切線的方程;
(2)當(dāng)a>0時,討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) 
(1)求在點(diǎn)處的切線方程;
(2)證明:曲線與曲線有唯一公共點(diǎn);
(3)設(shè),比較的大小, 并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)(2011•陜西)設(shè)f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與的大小關(guān)系;
(Ⅲ)求a的取值范圍,使得g(a)﹣g(x)<對任意x>0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若當(dāng)時,函數(shù)的最大值為,求的值;
(2)設(shè)為函數(shù)的導(dǎo)函數(shù)),若函數(shù)上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案