已知數(shù)列{an}的前n項和Sn=2n2+n-2,則該數(shù)列的通項公式an=
 
分析:an=
a1              n=1
Sn-Sn-1   n≥2
運算即可.
解答:解:當(dāng)n=1時,a1=S1=2-3+2=1.
當(dāng)n≥2時,an=Sn-Sn-1=2n2+n-2-[2(n-1)2+(n-1)-2]=4n-1.
an=
1,         n=1
4n-1,   n≥2

故答案是an=
1,      n=1
4n-1,n>1
點評:熟練掌握方法“當(dāng)n=1時,a1=S1;當(dāng)n≥2時,an=Sn-Sn-1”是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案