已知橢圓2x2+y2=2的兩個焦點為F1、F2,且B為短軸的一個焦點,則△F1BF2的外接圓方程為(    )

A.x2+y2=1            B.(x-1)2+y2=4          C.x2+y2=4            D.x2+(y-1)2=4

提示:橢圓的焦點為F1(0,1),F(xiàn)2(0,-1),短軸的一個端點為(1,0),于是△F1BF2的外接圓是以原點為圓心,以1為半徑的圓,其方程為x2+y2=1.

答案:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①已知橢圓
x2
16
+
y2
8
=1
的兩個焦點為F1,F(xiàn)2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是
 
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,橢圓C上任意一點到橢圓兩焦點的距離和為6.求橢圓C的方程;
(2)直線l:y=kx+1與雙曲線C:2x2-y2=1的右支交于不同的兩點A、B.求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊二模)已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左頂點為A,右焦點為F,且過點(1,
3
2
),橢圓C的焦點與曲線2
x
2
 
-2
y
2
 
=1
的焦點重合.
(1)求橢圓C的方程;
(2)過點F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點,點M、N的縱坐標分別為m、n.請問以線段MN為直徑的圓是否經(jīng)過x軸上的定點?若存在,求出定點的坐標,并證明你的結論;若不存在,請說明理由.
(3)在(2)問的條件下,求以線段MN為直徑的圓的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊二模)已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左頂點為A,右焦點為F,且過點(1,
3
2
),橢圓C的焦點與曲線2
x
2
 
-2
y
2
 
=1
的焦點重合.
(1)求橢圓C的方程;
(2)過點F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點,點M、N的縱坐標分別為m、n.請問以線段MN為直徑的圓是否經(jīng)過x軸上的定點?若存在,求出定意的坐標,并證明你的結論;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案