若橢圓+=1(m>n>0)和雙曲線=1(a>b>0)有相同的焦點F1F2,P是兩條曲線的一個交點,則|PF1|·|PF2|的值是(  )A.ma B.(ma) C.m2aD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2
3
,離心率為
2
2
,其右焦點為F,過點B(0,b)作直線交橢圓于另一點A.
(Ⅰ)若
AB
BF
=-6
,求△ABF外接圓的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓N:
x2
a2
+
y2
b2
=
1
3
相交于兩點G、H,設(shè)P為N上一點,且滿足
OG
+
OH
=t
OP
(O為坐標(biāo)原點),當(dāng)|
PG
-
PH
|<
2
5
3
時,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:x2+y2=
c2
4
(c是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經(jīng)過兩點(1,
4
2
3
)
、(
3
3
2
,1)
,求橢圓C的方程;
(2)當(dāng)c為定值時,求證:直線MN經(jīng)過一定點E,并求
OP
OE
的值(O是坐標(biāo)原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
3
,橢圓上的點到右焦點F的最近距離為2,若橢圓C與x軸交于A、B兩點,M是橢圓C上異于A、B的任意一點,直線MA交直線l:x=9于G點,直線MB交直線l于H點.
(1)求橢圓C的方程;
(2)試探求以GH為直徑的圓是否恒經(jīng)過x軸上的定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點F1(-
5
,0)
,若橢圓上存在一點D,滿足以橢圓短軸為直徑的圓與線段DF1相切于線段DF1的中點F.
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知兩點Q(-2,0),M(0,1)及橢圓G:
9x2
a2
+
y2
b2
=1
,過點Q作斜率為k的直線l交橢圓G于H,K兩點,設(shè)線段HK的中點為N,連接MN,試問當(dāng)k為何值時,直線MN過橢圓G的頂點?
(Ⅲ) 過坐標(biāo)原點O的直線交橢圓W:
9x2
2a2
+
4y2
b2
=1
于P、A兩點,其中P在第一象限,過P作x軸的垂線,垂足為C,連接AC并延長交橢圓W于B,求證:PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•海淀區(qū)一模)已知圓M:(x-
2
2+y2=r2(r>0).若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右頂點為圓M的圓心,離心率為
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若存在直線l:y=kx,使得直線l與橢圓C分別交于A,B兩點,與圓M分別交于G,H兩點,點G在線段AB上,且|AG|=|BH|,求圓M半徑r的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案