如圖所示,已知正方形ABCD的邊長(zhǎng)是13,平面ABCD外一點(diǎn)P到正方形各頂點(diǎn)的距離都是13,M、N分別是PA、BD上的點(diǎn),且PM∶MA=BN∶ND=5∶8.

(1)求證:直線MN∥平面PBC;

(2)求線段MN的長(zhǎng).

答案:
解析:

  (1)如圖,連AN并延長(zhǎng)和BC交于E點(diǎn)

  ∵ABCD為正方形 ∴BC∥AD ∴EN∶NA=BN∶ND

  又∵BN∶ND=PM∶MA=5∶8 ∴EN∶NA=PM∶MA=5∶8

  ∴MN∥PE 而MN平面PBC,PE平面BDC ∴MN∥平面PBC

  (2)由(1)知BE∶AD=EN∶NA=5∶8 ∴BE=

  在△PBE中,由余弦定理,PE2=PB2+BE2-2PB·EBcos ∴PE=

  又 ∴MN=7


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1
,M是線段EF的中點(diǎn).
(1)證明:CM∥平面DFB
(2)求異面直線AM與DE所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣州模擬)如圖所示,已知正方形ABCD的邊長(zhǎng)為2,AC∩BD=O.將正方形ABCD沿對(duì)角BD折起,得到三棱錐A-BCD.
(1)求證:平面AOC⊥平面BCD;
(2)若三棱錐A-BCD的體積為
6
3
,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•豐臺(tái)區(qū)二模)如圖所示,已知正方形ABCD的邊長(zhǎng)為1,以A為圓心,AD長(zhǎng)為半徑畫弧,交BA的延長(zhǎng)線于P1,然后以B為圓心,BP1長(zhǎng)為半徑畫弧,交CB的延長(zhǎng)線于P2,再以C為圓心,CP2長(zhǎng)為半徑畫弧,交DC的延長(zhǎng)線于P3,再以D為圓心,DP3長(zhǎng)為半徑畫弧,交AD的延長(zhǎng)線于P4,再以A為圓心,AP4長(zhǎng)為半徑畫弧,…,如此繼續(xù)下去,畫出的第8道弧的半徑是
8
8
,畫出第n道弧時(shí),這n道弧的弧長(zhǎng)之和為
n(n+1)π
4
n(n+1)π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).

求證:

(1)AM∥平面BDE;

(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省哈爾濱市高二下期中考試文數(shù)學(xué)卷(解析版) 題型:解答題

如圖所示,已知正方形和矩形所在的平面互相垂直, 是線段的中點(diǎn)。

(1)證明:∥平面

(2)求異面直線所成的角的余弦值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案