函數(shù)f(x)=log
1
2
x+x-4
的零點所在的區(qū)間是
 
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:判定出:f(
1
8
)=3+
1
8
-4<0
f(
1
16
)=4+
1
16
-4>0
f(6)=log
1
2
6+6-4
=log
1
2
6+2<0
,f(7)=log
1
2
7+7-3=log
1
2
7+4>0
根據(jù)函數(shù)的零點的判定定理可求
解答: 解:∵f(
1
8
)=3+
1
8
-4<0
,f(
1
16
)=4+
1
16
-4>0

∴函數(shù)f(x)=log
1
2
x+x-4
的零點所在的區(qū)間是(
1
16
,
1
8
)

f(6)=log
1
2
6+6-4
=log
1
2
6+2<0
,
f(7)=log
1
2
7+7-3=log
1
2
7+4>0

∴函數(shù)f(x)=log
1
2
x+x-4
的零點所在的區(qū)間是(6,7)
故答案為:(
1
16
,
1
8
)
和(6,7)
點評:本題主要考查了函數(shù)零點 定義及判定 的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線ρcosθ-ρsinθ+a=0與圓
x=-1+3cosθ
y=2+3sinθ
(θ為參數(shù))有公共點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系內(nèi),已知曲線C1的方程為ρ2-2ρ(cosθ-2sinθ)+4=0,以極點為原點,極軸方向為x正半軸方向,利用相同單位長度建立平面直角坐標(biāo)系,曲線C2的參數(shù)方程為
5x=1-4t
5y=18+3t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程以及曲線C2的普通方程;
(Ⅱ)設(shè)點P為曲線C2上的動點,過點P作曲線C1的切線,求這條切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)信中學(xué)某研究性學(xué)習(xí)小組經(jīng)過調(diào)查發(fā)現(xiàn),提高廣州大橋的車輛通行能力可改善整個廣州大道的交通狀況,在一般情況下,橋上車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).統(tǒng)計發(fā)現(xiàn),當(dāng)橋上的車流密度達(dá)到180輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過30輛/千米時,車流速度是
50千米/小時,研究表明:當(dāng)30≤x≤180時,車流速度v是車流密度的一次函數(shù);
(1)根據(jù)題意,當(dāng)0≤x≤180時,求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流速度x多大時,車流量g(x)=x•v(x)可以達(dá)到最大?并求出最大值.(注:車流量指單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sin(x+
π
4
)cos(x+
π
4
)-sin(2x-π).
(1)求f(x)的單調(diào)增區(qū)間;
(2)若將函數(shù)f(x)的圖象向右平移
π
3
個單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l平行于直線3x-4y+28=0,并且與兩坐標(biāo)軸圍成的三角形的面積為12,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
3
-
2
,b=
6
-
5
,c=
7
-
6
,則a、b、c的大小順序是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足|
a
|=1,|
b
|=2,(
a
+
b
)⊥
a
,則向量
a
與向量
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x+1,x∈[-1,0)
x2+1,x∈[0,1]
,則下列函數(shù)的圖象錯誤的是( 。
A、
f(x-1)的圖象
B、
f(-x)的圖象
C、
f(|x|)的圖象
D、
|f(x)|的圖象

查看答案和解析>>

同步練習(xí)冊答案