【題目】在直角坐標(biāo)系中,直線過原點(diǎn),傾斜角為,圓的圓心為,半徑為2,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)分別寫出直線和圓的極坐標(biāo)方程;

(2)已知點(diǎn)為極軸與圓的交點(diǎn)(異于極點(diǎn)),點(diǎn)為直線與圓在第二象限的交點(diǎn),求的面積.

【答案】(1)直線的極坐標(biāo)方程為;圓的極坐標(biāo)方程為.(2)

【解析】

(1)由題意直接可得直線m的極坐標(biāo)方程.再寫出圓在直角坐標(biāo)系下的標(biāo)準(zhǔn)方程,展開化簡后,利用互化公式即可得出極坐標(biāo)方程.

(2)聯(lián)立極坐標(biāo)方程,可得A,B的極徑,由三角形面積公式求解即可.

(1)由題意直線過原點(diǎn),傾斜角為,∴直線的極坐標(biāo)方程為

又圓的直角坐標(biāo)方程為,化簡可得,

可得:圓的極坐標(biāo)方程為.

(2)令極軸的極坐標(biāo)方程為:,代入圓的極坐標(biāo)方程可得,

解得;

代入圓的極坐標(biāo)方程可得,,解得

所以的面積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

≥5

保費(fèi)

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計(jì)表:

出險次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10

(1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

(2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

(3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

原命題為真,它的否命題為假;

原命題為真,它的逆命題不一定為真;

一個命題的逆命題為真,它的否命題一定為真;

一個命題的逆否命題為真,它的否命題一定為真;

⑤“,則的解集為的逆命題.

其中真命題是___________.把你認(rèn)為正確命題的序號都填在橫線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)(常數(shù)).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,求實(shí)數(shù)的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜率為1的直線與橢圓交于,兩點(diǎn),且線段的中點(diǎn)為,橢圓的上頂點(diǎn)為.

(1)求橢圓的離心率;

(2)設(shè)直線與橢圓交于兩點(diǎn),若直線的斜率之和為2,證明:過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓經(jīng)過點(diǎn),離心率為. 已知過點(diǎn)的直線與橢圓交于兩點(diǎn)

(1)求橢圓的方程;

(2)試問軸上是否存在定點(diǎn),使得為定值.若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)是函數(shù)值不恒為零的奇函數(shù),函數(shù)

1)求實(shí)數(shù)的值,并判斷函數(shù)的單調(diào)性;

2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,. 

(1)證明:平面平面

(2)若,為棱的中點(diǎn),,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案