判斷正誤:  

若-<θ<arctan{2tan[θ+arctan(tan3θ)]}=θ.

(  )

答案:T
解析:

證明: 設(shè)arctan(tan3θ)=α, 則tanα=tan3θ.

        tan[θ+arctan(tan3θ)]=tan(θ+α)

      =

tanθ+tanα

1-tanθ·tanα

tanθ+tan3θ

1-tan4θ

      =

tanθ

1-tan2θ

.

      ∴原式左邊=arctan   (

2tanθ

1-tan2θ

)=arctan(tan2θ)

      ∵-

π

2

<2θ<

π

2

      ∴原式左邊=×2θ=θ.  


提示:

設(shè)arctan(tan3θ)=α, 則tanα=tan3θ.

再用tanθ表示tan(θ+α)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:008

判斷正誤:

π<x<2π, 則arccot(cotx)=π-x.

(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:008

判斷正誤:

若f(sinx)=sin3x,   則f(cosx)=cos3x.

(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:008

判斷正誤:

若等邊圓柱(即底面直徑等于它的高)上下兩底面半徑OA、O1B1成α角, 則線段AB1和軸OO1所成角的正切值為sin

(  )

異面直線OO1與AB1之間的距離是R·cos

(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷正誤:

(1)空集是任何集合的真子集;(    )

(2)若AB,BC,則AC;(    )

(3)任何一個(gè)集合必有兩個(gè)或兩個(gè)以上的真子集;(    )

(4)如果凡不屬于B的元素也不屬于A,則AB.(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷正誤,并簡要說明理由.

a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,則對(duì)任一非零向量ba·b≠0;⑥a·b=0,則ab中至少有一個(gè)為0;⑦ab是兩個(gè)單位向量,則a2=b2.

查看答案和解析>>

同步練習(xí)冊(cè)答案