(2013•東城區(qū)二模)過(guò)拋物線(xiàn)y2=4x焦點(diǎn)的直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),若|AB|=10,則AB的中點(diǎn)到y(tǒng)軸的距離等于(  )
分析:設(shè)AB的中點(diǎn)為 E,過(guò) A、E、B 分別作準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為 C、F、D,如圖所示,由EF為直角梯形的中位線(xiàn)及拋物線(xiàn)的定義求出 EF,則 EH=EF-1 為所求.
解答:解:拋物線(xiàn)y2=4x焦點(diǎn)(1,0),準(zhǔn)線(xiàn)為 l:x=-1,
設(shè)AB的中點(diǎn)為 E,過(guò) A、E、B 分別作準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為 C、F、D,EF交縱軸于點(diǎn)H,如圖所示:
則由EF為直角梯形的中位線(xiàn)知,
EF=
AC+BD
2
=
AF+FB
2
=
AB
2
=5,
∴EH=EF-1=4,
則AB的中點(diǎn)到y(tǒng)軸的距離等于4.
故選D.
點(diǎn)評(píng):本題考查拋物線(xiàn)的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)已知函數(shù)f(x)=lnx+
a
x
(a>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)如果P(x0,y0)是曲線(xiàn)y=f(x)上的任意一點(diǎn),若以P(x0,y0)為切點(diǎn)的切線(xiàn)的斜率k≤
1
2
恒成立,求實(shí)數(shù)a的最小值;
(3)討論關(guān)于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的實(shí)根情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,則f(f(-1))等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)根據(jù)表格中的數(shù)據(jù),可以斷定函數(shù)f(x)=lnx-
3
x
的零點(diǎn)所在的區(qū)間是( 。
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)對(duì)定義域的任意x,若有f(x)=-f(
1
x
)
的函數(shù),我們稱(chēng)為滿(mǎn)足“翻負(fù)”變換的函數(shù),下列函數(shù):
y=x-
1
x
,
②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中滿(mǎn)足“翻負(fù)”變換的函數(shù)是
①③
①③
. (寫(xiě)出所有滿(mǎn)足條件的函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)二模)已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案