【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機性,且互不影響,其具體情況如下表:

作物產(chǎn)量(kg)

300

500

概率

0.5

0.5

作物市場價格(元/kg)

6

10

概率

0.4

0.6

(1)設(shè)X表示在這塊地上種植1季此作物的利潤,求X的分布列;

(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.

【答案】1的分布列為

X

4000

2000

800

P

03

05

02

2

【解析】

試題分析:(1)根據(jù)條件中的表格可知,作物產(chǎn)量與市場價的可能的組合總共有四種情況:產(chǎn)量,市場價;產(chǎn)量,市場價;產(chǎn)量,市場價;產(chǎn)量,市場價;因此作物的利潤的計算也應(yīng)分四種情況進行計算:,,,若設(shè)表示事件作物產(chǎn)量為,表示事件作物市場價格為,則取到各個值的概率為:

,

,即可知的分布列;(2)由(1)可知,事件等價于事件,因此,而所求事件的概率等價于季的利潤都不少于元或季當中有季利潤不少于元,根據(jù)二項分布的相關(guān)內(nèi)容,可知所求概率為

試題解析:(1)設(shè)表示事件作物產(chǎn)量為,表示事件作物市場價格為/kg”

由題設(shè)知,,(注:基本事件敘述各1分)2

利潤=產(chǎn)量×市場價格-成本,

所有可能的取值為:

,

,, 4

,

,

的分布列為

X

4000

2000

800

P

03

05

02

2)設(shè)表示事件季利潤不少于8

由題意知,,相互獨立,由(1)知,

,

季中至少有季的利潤不少于元的概率為

12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設(shè)一倉庫,設(shè),并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.

(1)求關(guān)于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價M最低.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)部門隨機抽測生產(chǎn)某種零件的工人的日加工零件數(shù)(單位:件),其中A車間13人,B車間12人,獲得數(shù)據(jù)如下:

根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組

頻數(shù)

頻率

[25,30]

3

0.12

3035]

5

0.20

35,40]

8

0.32

4045]

n1

f1

45,50]

n2

f2

1)確定樣本頻率分布表中n1、n2、f1f2的值;

2)現(xiàn)從日加工零件數(shù)落在(40,45]的工人中隨機選取兩個人,求這兩個人中至少有一個來自B車間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為,若雙曲線的一條漸近線與直線平行,則實數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】0,1,2,3,4這五個數(shù)字組成無重復數(shù)字的自然數(shù).

(Ⅰ)在組成的三位數(shù)中,求所有偶數(shù)的個數(shù);

(Ⅱ)在組成的三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個位上的數(shù)字都小,則稱這個數(shù)為“凹數(shù)”,如301423等都是“凹數(shù)”,試求“凹數(shù)”的個數(shù);

(Ⅲ)在組成的五位數(shù)中,求恰有一個偶數(shù)數(shù)字夾在兩個奇數(shù)數(shù)字之間的自然數(shù)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 ,其中, 為左、右焦點,且離心率,直線與橢圓交于兩不同點, .當直線過橢圓右焦點且傾斜角為時,原點到直線的距離為.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]

(Ⅰ)求橢圓的方程;

(Ⅱ)若,當面積為時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|xa|-x(a>0).

(1)若a=3,解關(guān)于x的不等式f(x)<0;

(2)若對于任意的實數(shù)x,不等式f(x)-f(xa)<a2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了探究某市高中理科生在高考志愿中報考“經(jīng)濟類”專業(yè)是否與性別有關(guān),現(xiàn)從該市高三理科生中隨機抽取50名學生進行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)

(1)據(jù)此樣本判斷能否在犯錯誤的概率不超過0.001的前提下認為理科生報考“經(jīng)濟類”專業(yè)與性別有關(guān)?

(2)若以樣本中各事件的頻率作為概率估計全市總體考生的報考情況,現(xiàn)從該市的全體考生(人數(shù)眾多)中隨機抽取3設(shè)3人中報考“經(jīng)濟類”專業(yè)的人數(shù)為隨機變量X,求隨機變量X的概率分布列及數(shù)學期望

附:

其中nabcd.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線過點,傾斜角為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是

(1)寫出直線的參數(shù)方程和曲線的直角坐標方程;

(2)若,設(shè)直線與曲線交于兩點,求

(3)在(2)條件下,求的面積.

查看答案和解析>>

同步練習冊答案