【題目】求橢圓的標(biāo)準(zhǔn)方程
(1)已知某橢圓的左右焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且經(jīng)過(guò)點(diǎn)P( , ),求該橢圓的標(biāo)準(zhǔn)方程;
(2)已知某橢圓過(guò)點(diǎn)( ,﹣1),(﹣1, ),求該橢圓的標(biāo)準(zhǔn)方程.
【答案】
(1)解: ,
又橢圓焦點(diǎn)為(±1,0),所以b=1,
所以橢圓方程為 .
(2)解:設(shè)橢圓方程為mx2+ny2=1,則有 ,
解得 ,所以橢圓方程為
【解析】(1)利用橢圓的定義,結(jié)合焦點(diǎn)坐標(biāo)求出基本量,即可求該橢圓的標(biāo)準(zhǔn)方程;(2) 設(shè)橢圓方程為mx2+ny2=1,利用待定系數(shù)法求該橢圓的標(biāo)準(zhǔn)方程.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AD=2,AB=4,E,F(xiàn)分別為邊AB,AD的中點(diǎn),將△ADE沿DE折起,點(diǎn)A,F(xiàn)折起后分別為點(diǎn)A′,F(xiàn)′,得到四棱錐A′﹣BCDE.給出下列幾個(gè)結(jié)論:
①A′,B,C,F(xiàn)′四點(diǎn)共面;
②EF'∥平面A′BC;
③若平面A′DE⊥平面BCDE,則CE⊥A′D;
④四棱錐A′﹣BCDE體積的最大值為 .
其中正確的是(填上所有正確的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是正方形, ,點(diǎn)E在棱PB上.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知2sinBcosA=sin(A+C).
(1)求角A;
(2)若BC=2,△ABC的面積是 ,求AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是:( )
A. 命題“若,則”的否命題為“若,則”
B. 命題“存在,使得”的否定是:“任意,都有”
C. 若命題“非”與命題“或”都是真命題,那么命題一定是真命題
D. 命題“若,則”的逆命題是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足an+1=2an﹣1(n∈N+),a1=2.
(1)求證:數(shù)列{an﹣1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Sn(n∈N+).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在等差數(shù)列中,已知,前項(xiàng)和為,且,求當(dāng)取何值時(shí), 取得最大值,并求出它的最大值;
(2)已知數(shù)列的通項(xiàng)公式是,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(1)證明:平面PQC⊥平面DCQ
(2)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com