已知數(shù)列{an}滿足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通項(xiàng)公式;
(2)若bn=
4
an
-4023
cn=
b2n+1
+
b2n
2bn+1bn
(n∈N*)
,求證:c1+c2+…+cn<n+1.
(1)由已知,得
1
an+1
=
1
2
+
1
an
,即
1
an+1
-
1
an
=
1
2
 (n∈N*)
,
∴數(shù)列{
1
an
}
是以
1
a1
為首項(xiàng),
1
2
為公差的等差數(shù)列.
1
an
=
1
a1
+(n-1)×
1
2
=
(n-1)a1+2
2a1
,
an=
2a1
(n-1)a1+2
…(4分)
又因?yàn)?span mathtag="math" >a2011=
2a1
2010a1+2
=
1
2011

解得a1=
1
1006

an=
1
1006
(n-1)×
1
1006
+2
=
2
n+2011
…(6分)
(2)證明:∵an=
2
n+2011
,
bn=4×
n+2011
2
-4023=2n-1
-------(7分)
cn=
b2n+1
+
b2n
2bn+1bn
=
(2n+1)2+(2n-1)2
2(2n+1)(2n-1)
=
4n2+1
4n2-1
=1+
2
(2n-1)(2n+1)
=1+
1
2n-1
-
1
2n+1

c1+c2+…cn-n=(1+1-
1
3
)+(1+
1
3
-
1
5
)+…+(1+
1
2n-1
-
1
2n+1
)-n=1-
1
2n+1
<1

故c1+c2+…+cn<n+1…(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案