分析 可判斷f(x)是周期為3的函數(shù),再由函數(shù)的奇偶性可得f(0)=f(3)=f(6)=f($\frac{3}{2}$)=f($\frac{9}{2}$)=f(1)=f(4)=f(2)=f(5)=0;從而解得.
解答 解:∵f(-$\frac{3}{2}+x$)=f($\frac{3}{2}+x$),
∴f(x)是周期為3的函數(shù),且f(-$\frac{3}{2}$)=f($\frac{3}{2}$),
又∵f(x)是定義在R上的奇函數(shù),
∴f(0)=0,f(-$\frac{3}{2}$)=-f($\frac{3}{2}$);
∴f(0)=f(3)=f(6)=0,f($\frac{3}{2}$)=f($\frac{9}{2}$)=0;
當(dāng)x∈(0,$\frac{3}{2}$)時,令f(x)=ln(x2-x+1)=0得,
x=1;
故f(1)=f(4)=0,f(-1)=f(2)=f(5)=0;
故函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是9,
故答案為:9.
點評 本題考查了抽象函數(shù)的性質(zhì)的判斷與應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,3} | B. | {1,5} | C. | {5,7} | D. | {1,3,5,7} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -1 | C. | -5 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com