13.若實(shí)數(shù)x,y滿足x2+y2-2x-2y+1=0,則$\frac{y-4}{x-2}$的取值范圍為(  )
A.[0,$\frac{4}{3}$]B.[$\frac{4}{3}$,+∞)C.(-$∞,\frac{4}{3}$]D.[-$\frac{4}{3}$,0)

分析 已知等式變形后得到圓方程,找出圓心與半徑,求出圓心(1,1)到直線tx-y-2t+4=0的距離d=$\frac{|t-1-2t+4|}{\sqrt{1+{t}^{2}}}$≤1,
即可得出所求式子的范圍.

解答 解:令$\frac{y-4}{x-2}$=t,即tx-y-2t+4=0,表示一條直線;又方程x2+y2-2x-2y+1=0可化為(x-1)2+(y-1)2=1,表示圓心為(1,1),半徑1的圓;
由題意直線與圓有公共點(diǎn),∴圓心(1,1)到直線tx-y-2t+4=0的距離d=$\frac{|t-1-2t+4|}{\sqrt{1+{t}^{2}}}$≤1,
∴t≥$\frac{4}{3}$,即$\frac{y-4}{x-2}$的取值范圍為[$\frac{4}{3}$,+∞).
故選B.

點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系,利用了數(shù)形結(jié)合的思想,熟練運(yùn)用數(shù)形結(jié)合思想是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若圓錐的側(cè)面展開(kāi)圖是半徑為2,中心角為$\frac{5π}{3}$的扇形,則由它的兩條母線所確定的截面面積的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列各組函數(shù)中,表示同一函數(shù)的是( 。
A.y=1,y=x0B.y=$\sqrt{x-1}$•$\sqrt{x+1}$,y=$\sqrt{{x}^{2}-1}$
C.y=x,y=$\root{3}{{x}^{3}}$D.y=|x|,t=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,a1=8,且a4-1,a5,3a4+1成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及Sn
(2)若bn=log2(an•an+1),cn=$\frac{1}{_{n}•_{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若?x>0,ex-1+1≥a+lnx,則a的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)全集U=R,A={x|x<6},B={x|x>1},則A∩B={x1<x<6},B∩∁UA={x|x≥6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=x2-2x-3的單調(diào)減區(qū)間是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.等比數(shù)列{αn}中,α456=27,則α5=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.給定兩個(gè)向量$\overrightarrow a=({3,4})\;,\;\overrightarrow b=({2,1})$,若$({\overrightarrow a+x\overrightarrow b})∥({\overrightarrow a-\overrightarrow b})$,則實(shí)數(shù)x等于(  )
A.-3B.$\frac{3}{2}$C.3D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案