精英家教網 > 高中數學 > 題目詳情
數列{an}的通項公式an=
1
n
+
n+1
,則該數列的前
99
99
項之和等于9.
分析:將數列通項化簡,利用疊加法,即可求得結論.
解答:解:∵an=
1
n
+
n+1
,∴an=
n+1
-
n

∴Sn=a1+a2+…+an=
2
-1+
3
-
2
+…+
n+1
-
n
=
n+1
-1

n+1
-1=9
,則n=99
故答案為:99
點評:本題考查數列的求和,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

數列{an}的前n項和Sn=2n2+n-1,則數列{an}的通項公為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,Sn是數列{an}的前n項和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數列{an}的通項公an
(2)若記bn=(2n+1)•(
1Sn
+2)
,Tn為數列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列{an}中,a1=1,Sn是數列{an}的前n項和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數列{an}的通項公an
(2)若記數學公式,Tn為數列{bn}的前n項和,求Tn

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

數列{an}的前n項和Sn=2n2+n-1,則數列{an}的通項公為______.

查看答案和解析>>

科目:高中數學 來源:2002-2003學年北京市朝陽區(qū)高一(上)期末數學試卷(解析版) 題型:填空題

數列{an}的前n項和Sn=2n2+n-1,則數列{an}的通項公為   

查看答案和解析>>

同步練習冊答案