若a>b>0,試問a2+
16
b(a-b)
是否存在最小值,若存在,求出最小值,若不存在,請(qǐng)說明理由.
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:兩次利用基本不等式的性質(zhì)即可得出.
解答: 解:∵a>b>0,∴a-b>0,
∴a2+
16
b(a-b)
≥a2+
16
(
a-b+b
2
)2
=a2+
64
a2
≥2
a2
64
a2
=16,當(dāng)且僅當(dāng)a=2b=2
2
時(shí)取等號(hào).
∴存在最小值為16.
點(diǎn)評(píng):本題考查了基本不等式的性質(zhì),注意等號(hào)成立的條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
 x2-2x的單調(diào)增區(qū)間為(  )
A、(1,+∞)
B、(-1,+∞)
C、(-∞,1)
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=ax2+2bx+1(a≠0).
(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函數(shù)f(x)在(-1,0)內(nèi)有且只有一個(gè)零點(diǎn)的概率;
(2)若a∈(0,1),b∈(-1,1),求函數(shù)f(x)在(-∞,-1)上為減函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC頂點(diǎn)A(3,4),B(6,0),C(-5,-2),求∠A的平分線AT所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所描述的算法程序,記輸出的一列a的值依次為a1,a2,…,an,其中n∈N*且n≤2014.
(1)若輸入λ=
3
,寫出全部輸出結(jié)果.
(2)若輸入λ=4,記bn=
an-(2-
3
)
an-(2+
3
)
(n∈N*),求bn+1與bn的關(guān)系(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+2x-2)•ex,x∈R,e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若方程f(x)=m有兩個(gè)不同的實(shí)數(shù)根,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-1)(x-a)(x-a2)=0,a∈R}.
(1)若集合A中只有一個(gè)元素,求實(shí)數(shù)a的值;
(2)求集合A中所有元素的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-x+lnx(a>0).
(Ⅰ)若f(x)是單調(diào)函數(shù),求a的取值范圍;
(Ⅱ)若f(x)有兩個(gè)極值點(diǎn)x1,x2,證明:f(x1)+f(x2)<2ln2-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求和:
1
22-1
+
1
32-1
+
1
42-1
+…+
1
n2-1
(n≥2).

查看答案和解析>>

同步練習(xí)冊(cè)答案