【題目】現有7名數理化成績優(yōu)秀者,其中A1,A2,A3數學成績優(yōu)秀,B1,B2物理成績優(yōu)秀,C1,C2化學成績優(yōu)秀,從中選出數學、物理、化學成績優(yōu)秀者各1名,組成一個小組代表學校參加競賽.
(1)求C1被選中的概率;
(2)求A1,B1不全被選中的概率.
【答案】(1);(2)
【解析】
(1)從3個數學成績優(yōu)秀者,2個物理成績優(yōu)秀者,2名化學成績優(yōu)秀者各選一個人,共有3×2×2種方法,滿足條件的有3×2種結果,代入公式,也可以通過列舉出所有的情況,得到結果.
(2)“A1,B1不全被選中”這一事件,其對立事件是“A1,B1全被選中”,用對立事件公式來解,也可以根據上面列舉的結果得到結論.
從7名中選出數學、物理、化學成績優(yōu)秀者各1名,其一切可能的結果組成的基本事件集合Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2)}.
事件Ω由12個基本事件組成,由于每一個基本事件被抽取的機會相等,因此這些基本事件的發(fā)生是等可能的.
(1)用M表示“C1恰被選中”這一事件,則M={(A1,B1,C1),(A1,B2,C1),(A2,B1,C1),(A2,B2,C1),(A3,B1,C1),(A3,B2,C1)},
事件M由6個基本事件組成,因此P(M)==.
(2)用N表示“A1,B1不全被選中”這一事件,則其對立事件表示“A1,B1全被選中”這一事件,由于={(A1,B1,C1),(A1,B1,C2)},事件由2個基本事件組成,所以P(N)==,
所以由對立事件的概率公式得P(N)=1-P()=1-=.
科目:高中數學 來源: 題型:
【題目】根據如下所示的列聯表得到如下四個判斷:①在犯錯誤的概率不超過0.001的前提下認為患肝病與嗜酒有關;②在犯錯誤的概率不超過0.01的前提下認為患肝病與嗜酒有關;③認為患肝病與嗜酒有關的出錯的可能為0.001%;④沒有證據顯示患肝病與嗜酒有關.
分類 | 嗜酒 | 不嗜酒 | 總計 |
患肝病 | 7 775 | 42 | 7 817 |
未患肝病 | 2 099 | 49 | 2 148 |
總計 | 9 874 | 91 | 9 965 |
其中正確命題的個數為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1在平面直角坐標系中的參數方程為 (t為參數),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,有曲線C2:ρ=2cosθ﹣4sinθ
(1)將C1的方程化為普通方程,并求出C2的平面直角坐標方程
(2)求曲線C1和C2兩交點之間的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱臺DEF﹣ABC中,AB=2DE,G,H分別為AC,BC的中點.
(Ⅰ)求證:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH與平面ACFD所成的角(銳角)的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】調查某醫(yī)院某段時間內嬰兒出生的時間與性別的關系,得到下面的數據:出生時間在晚上的男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.
(1)將2×2列聯表補充完整.
性別 | 出生時間 | 總計 | |
晚上 | 白天 | ||
男嬰 | |||
女嬰 | |||
總計 |
(2)能否在犯錯誤的概率不超過0.1的前提下認為嬰兒性別與出生時間有關系?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】A袋中有1個紅球和1個黑球,B袋中有2個紅球和1個黑球,A袋中任取1個球與B袋中任取1個球互換,這樣的互換進行了一次,求:
(1)A袋中紅球恰是1個的概率;
(2)A袋中紅球至少是1個的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知球O是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)A﹣BCD的外接球,BC=3,AB=2 ,點E在線段BD上,且BD=3BE,過點E作球O的截面,則所得截面圓面積的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校期中考試后,按照學生的數學考試成績優(yōu)秀和不優(yōu)秀進行統(tǒng)計,得到如下列聯表:
優(yōu)秀 | 不優(yōu)秀 | 總計 | |
文科 | 60 | 140 | 200 |
理科 | 265 | 335 | 600 |
總計 | 325 | 475 | 800 |
(1)畫出列聯表的等高條形圖,并通過圖形判斷數學成績與文理分科是否有關;
(2)利用獨立性檢驗,分析文理分科對學生的數學成績是否有影響.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次中學生田徑運動會上,參加男子跳高的17名運動員的成績如下:
成績/m | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 | 1.85 | 1.90 |
人數 | 2 | 3 | 2 | 3 | 4 | 1 | 1 | 1 |
分別求這些運動員的成績的眾數、中位數、平均數(保留到小數點后兩位),并分析這些數據的含義.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com