.(12分)

如圖,△ABC內(nèi)接于⊙O,過(guò)點(diǎn)A的直線交⊙O于點(diǎn)P,交BC的延長(zhǎng)線于點(diǎn)D,

且AB2=AP·AD

(1)求證:AB=AC;

(2)如果∠ABC=60°,⊙O的半徑為1,且P為弧AC的中點(diǎn),求AD的長(zhǎng).

 

【答案】

(1)證明:聯(lián)結(jié)BP.

∵AB2=AP·AD,∴

∵∠BAD=∠PAB,∴△ABD∽△APB,

∴∠ABC=∠APB,∵∠ACB=∠APB,

∴∠ABC=∠ACB.∴AB=AC.

(2)由(1)知AB=AC.∵∠ABC=60°,∴△ABC是等邊三角形.

∴∠BAC=60°,∵P為弧AC的中點(diǎn),

∴∠ABP=∠PAC=∠ABC=30°,∴∠BAP=90°,∴  BP是⊙O的直徑,∴  BP=2,∴AP=BP=1,

在Rt△PAB中,由勾股定理得  AB=BP2-AP2=3,∴AD==3.

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點(diǎn)C,BE∥MN交AC于點(diǎn)E.若AB=6,BC=4,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)已知點(diǎn)A是曲線ρ=2sinθ上任意一點(diǎn),則點(diǎn)A到直線ρsin(θ+
π
3
)=4
的距離的最小值是
 

(2)已知2x+y=1,x>0,y>0,則
x+2y
xy
的最小值是
 

(3)如圖,△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點(diǎn)C,BE∥MN交AC于點(diǎn)E.若AB=6,BC=4,則AE的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O,過(guò)點(diǎn)A的直線交⊙O于點(diǎn)P,交BC的延長(zhǎng)線于點(diǎn)D,且AB2=AP•AD
(Ⅰ)求證:∠ABC=∠ACB
(Ⅱ)如果∠ABC=60°,⊙O的半徑為1,且P為弧AC的中點(diǎn),求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于圓柱的底面圓O,AB是圓O的直徑,AB=2,BC=1,DC、EB是兩條母線,且 tan∠EAB=
3
2

(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD⊥平面ADE;
(3)在CD上是否存在一點(diǎn)M,使得MO∥平面ADE,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于點(diǎn)C,BE∥MN交AC于點(diǎn)E,若AB=6,BC=4,則AE的長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案