1.已知函數(shù)f(x)=|kx+1|+|kx-2k|,g(x)=x+1.
(1)當k=1時,求不等式f(x)>g(x)的解集;
(2)若存在x0∈R,使得不等式f(x0)≤2成立,求實數(shù)k的取值范圍.

分析 (1)問題轉(zhuǎn)化為|x-2|+|x-1|-x-1>0,設函數(shù)y=|x-2|+|x-1|-x-1,通過討論x的范圍求出不等式的解集即可;
(2)問題 等價于|2k-1|≤2,解出即可.

解答 解(1)k=1時,不等式f(x)>g(x)化為:|x-2|+|x-1|-x-1>0,
設函數(shù)y=|x-2|+|x-1|-x-1,則y=$\left\{\begin{array}{l}{2-3x,x<1}\\{-x,1≤x≤2}\\{x-4,x>2}\end{array}\right.$,
令y>0,解得:x>4或x<$\frac{2}{3}$,
∴原不等式的解集是{x|x<$\frac{2}{3}$或x>4};
(2)∵f(x)-|kx-1|+|kx-2k|>|kx-1-kx+2k|-|2k-1|,
∴存在x0∈R,使得不等式f(x0)≤2成立
等價于|2k-1|≤2,解得:-$\frac{1}{2}$≤k≤$\frac{3}{2}$,
故所求實數(shù)k的范圍是[-$\frac{1}{2}$,$\frac{3}{2}$].

點評 本題考查了絕對值不等式問題,考查函數(shù)恒成立問題以及分類討論思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)y=-3sin3x的最大值與取得最大值時相應的一個x的值為( 。
A.1,$\frac{π}{2}$B.1,-$\frac{π}{2}$C.3,$\frac{π}{6}$D.3,-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.命題p:函數(shù)f(x)=sin(2x-$\frac{π}{6}$)+1滿足f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x),命題q:函數(shù)g(x)=sin(2x+θ)+1可能是奇函數(shù)(θ為常數(shù)).則復合命題“p或q”“p且q”“非q”為真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{\frac{1}{3}},x≤-1}\\{x+\frac{2}{x}-7,x>-1}\end{array}\right.$則f[f(-8)]=( 。
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=|2x+1|+|2x-1|
(1)求不等式f(x)≤4的解集;
(2)若關(guān)于x的不等式f(x)>log2(a2-3a)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.${(x-\frac{1}{2x})^{10}}$的展開式中,x4項的系數(shù)為-15(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)是偶函數(shù),且最小正周期為π的是(  )
A.y=sin(π-2x)B.y=sin2xcos2xC.y=cos22x+1D.y=cos(2x-π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某學校共有高一、高二、高三學生2000名,各年級男、女人數(shù)如圖:已知在全校學生中隨機抽取1名,抽取高二年級女生的概率是0.19.

(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取60名學生,問應在高三年級抽取多少名?
(3)已知y≥245,z≥245,求高三年級中女生比男生多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=ax2+x-b(a,b均為正數(shù)),不等式f(x)≥0的解集記為P,集合Q={x|-2-t<x<-2+t},若對于任意正數(shù)t,P∩Q≠∅,則$\frac{1}{a}$-$\frac{1}$的最大值是$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案