10.已知正方形ABCD的邊長(zhǎng)為2,P是正方形ABCD的外接圓上的動(dòng)點(diǎn),則$\overrightarrow{AB}$•$\overrightarrow{AP}$的范圍是[-2$\sqrt{2}$+2,2$\sqrt{2}$+2].

分析 如圖所示,A(-1,-1),B(1,-1).設(shè)P($\sqrt{2}$cosθ,$\sqrt{2}$sinθ),可得$\overrightarrow{AB}$•$\overrightarrow{AP}$=(2,0)•($\sqrt{2}$cosθ+1,$\sqrt{2}$sinθ+1)=2$\sqrt{2}$cosθ+2,利用余弦函數(shù)的單調(diào)性即可得出.

解答 解:如圖所示,A(-1,-1),B(1,-1).
設(shè)P($\sqrt{2}$cosθ,$\sqrt{2}$sinθ).
∴$\overrightarrow{AB}$•$\overrightarrow{AP}$=(2,0)•($\sqrt{2}$cosθ+1,$\sqrt{2}$sinθ+1)
=2$\sqrt{2}$cosθ+2,
∵-1≤cosθ≤1,
∴$\overrightarrow{AB}$•$\overrightarrow{AP}$的范圍是[-2$\sqrt{2}$+2,2$\sqrt{2}$+2],
故答案為:[-2$\sqrt{2}$+2,2$\sqrt{2}$+2].

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算、余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求函數(shù)f(x)=x3-x+6在區(qū)間[-1,1]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=ax2-(2a+1)x+lnx,g(x)=ex-x-1.
(1)當(dāng)a=1時(shí),求f(x)的極值;
(2)若對(duì)?x1∈(0,+∞),x2∈R都有f(x1)≤g(x2)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(n)=(1+$\frac{1}{n}$)n-n,其中n為正整數(shù).
(1)求f(1)、f(2)、f(3)的值;
(2)猜想滿足不等式f(n)<0的正整數(shù)n的范圍,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短軸長(zhǎng)為2$\sqrt{3}$,且2a,2b,3c成等比數(shù)列.設(shè)F1、F2是橢圓的左、右焦點(diǎn),過(guò)F2的直線與y軸右側(cè)橢圓相交于M,N兩點(diǎn),直線F1M,F(xiàn)1N分別與直線x=4相交于P,Q兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求△F2PQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,已知下列條件,解三角形(角度精確到1°,邊長(zhǎng)精確到1cm):
(1)b=26cm,c=15cm,C=23°;
(2)a=15cm,b=10cm,A=60°;
(3)b=40cm,c=20cm,C=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)的和Sn=$\frac{1}{{n}^{2}}$+$\frac{4}{n}$,求它的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)a∈R,若x≤0時(shí),恒有(ax+1)(x2-x-2a)≤0,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,AC是圓O的直徑,點(diǎn)B在圓O上,∠BAC=30°,BM⊥AC交AC于點(diǎn)M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1.
(1)證明EM⊥BF;
(2)請(qǐng)?jiān)趫D中作出平面ABC與平面BEF的交線(不要求證明)
(3)求平面BEF和平面ABC所成的銳二面角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案