分析 如圖所示,A(-1,-1),B(1,-1).設(shè)P($\sqrt{2}$cosθ,$\sqrt{2}$sinθ),可得$\overrightarrow{AB}$•$\overrightarrow{AP}$=(2,0)•($\sqrt{2}$cosθ+1,$\sqrt{2}$sinθ+1)=2$\sqrt{2}$cosθ+2,利用余弦函數(shù)的單調(diào)性即可得出.
解答 解:如圖所示,A(-1,-1),B(1,-1).
設(shè)P($\sqrt{2}$cosθ,$\sqrt{2}$sinθ).
∴$\overrightarrow{AB}$•$\overrightarrow{AP}$=(2,0)•($\sqrt{2}$cosθ+1,$\sqrt{2}$sinθ+1)
=2$\sqrt{2}$cosθ+2,
∵-1≤cosθ≤1,
∴$\overrightarrow{AB}$•$\overrightarrow{AP}$的范圍是[-2$\sqrt{2}$+2,2$\sqrt{2}$+2],
故答案為:[-2$\sqrt{2}$+2,2$\sqrt{2}$+2].
點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算、余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com