已知直線,求:

(1)a為何值時(shí),這條直線經(jīng)過原點(diǎn);

(2)a為何值時(shí),這條直線與y軸交于點(diǎn)(0,-2);

(3)a為何值時(shí),這條直線過點(diǎn)(1,0)

答案:略
解析:

(1)由條件知點(diǎn)(0,0)在直線上,∴,∴

(2)由條件知點(diǎn)(0,-2)在直線上,∴,∴

(3)當(dāng)時(shí),,即,∴


提示:

本題涉及直線過定點(diǎn)時(shí)字母值的求解問題,若某點(diǎn)在一直線上,則該點(diǎn)坐標(biāo)滿足直線的解析式,從而建立方程求解字母.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線C1
x=1+tcosα
y=tsinα
(t
為參數(shù)),C2
x=cosθ
y=sinθ
為參數(shù)).
(1)當(dāng)α=
π
3
時(shí),求C1被C2截得的弦長;
(2)過坐標(biāo)原點(diǎn)O作C1的垂線,垂足為A,當(dāng)α變化時(shí),求A點(diǎn)的軌跡的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
已知直線C1
x=1+tcosα
y=ttanα
(t為參數(shù)),圓C2
x=cosθ
y=sinθ
(θ為參數(shù)).當(dāng)α=
π
3
時(shí),將直線和曲線的參數(shù)方程轉(zhuǎn)化成普通方程并,求C1與C2的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南京二模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知直線l:
x=1-
5
5
t
y=-1+
2
5
5
t
 
(t為參數(shù))和曲線C:
x=1+t
y=1+t2
(t為參數(shù)).若P是曲線C上任意一點(diǎn),求點(diǎn)P到直線l的距離的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:
x=-1-3t
y=2+4t
與雙曲線(y-2)2-x2=1相交于A、B兩點(diǎn),P點(diǎn)坐標(biāo)P(-1,2).求:
(1)|PA|•|PB|的值;  
(2)弦長|AB|; 
(3)弦AB中點(diǎn)M與點(diǎn)P的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案