將正方形ABCD沿對(duì)角線BD折成一個(gè)120°的二面角,點(diǎn)C到達(dá)點(diǎn)C1,這時(shí)異面直線AD與BC1所成的角的余弦值是( )
A.
B.
C.
D.
【答案】分析:欲求異面直線AD與BC1所成的角的余弦值,先找出異面直線AD與BC1所成的角,再將其放置在一個(gè)三角形中,利用余弦定理可得所求余弦值.
解答:解:設(shè)正方形邊長(zhǎng)為1,由題意易知∠CBC1即為AD與BC1所成的角.
設(shè)AC與BD相交于O,易知△CC1O為正三角形,故CC1=,在△CBC1中,
由余弦定理可得所求余弦值為
故選D.
點(diǎn)評(píng):本題主要考查了異面直線及其所成的角,以及數(shù)形結(jié)合思想、運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福州一中高三數(shù)學(xué)模擬試卷(一)(文科) 題型:013

邊長(zhǎng)為1的正方形ABCD沿對(duì)其角線BD將△BDC折起得到三棱錐C-ABD,若三棱錐C-ABD的體積為,則直線BC與平面ABD所成角的正弦值為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省成都市石室中學(xué)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為   

查看答案和解析>>

同步練習(xí)冊(cè)答案