若實(shí)數(shù)
滿足
,則
的最小值為( )
A. | B.2 | C. | D.8 |
試題分析:
,
設(shè)
為兩動(dòng)點(diǎn),則點(diǎn)
是函數(shù)
的圖象上一點(diǎn),點(diǎn)
是函數(shù)
的圖象上一點(diǎn);而
,
則問(wèn)題轉(zhuǎn)化為求曲線
上的點(diǎn)
到直線
的距離的最小值,如下圖所示,
直線
的斜率為1;
由
,得
,令
,所以,
,解之得:
(舍去),
由
,得
;所以
到直線
的距離最小
從而有
,故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),若
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
, 在
處取得極小值2.
(1)求函數(shù)
的解析式;
(2)求函數(shù)
的極值;
(3)設(shè)函數(shù)
, 若對(duì)于任意
,總存在
, 使得
, 求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)若
,求函數(shù)
的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)
圖象上任意一點(diǎn)的切線
的斜率為
,當(dāng)
的最小值為1時(shí),求此時(shí)切線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)設(shè)
,求
的最小值;
(Ⅱ)如何上下平移
的圖象,使得
的圖象有公共點(diǎn)且在公共點(diǎn)處切線相同.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知a,b為常數(shù),a¹0,函數(shù)
.
(1)若a=2,b=1,求
在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:
在區(qū)間[1,2]上是增函數(shù);
②若
,
,且
在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)
形成的平面區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
(
為常數(shù)),其圖象是曲線
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)
的導(dǎo)函數(shù)為
,若存在唯一的實(shí)數(shù)
,使得
與
同時(shí)成立,求實(shí)數(shù)
的取值范圍;
(3)已知點(diǎn)
為曲線
上的動(dòng)點(diǎn),在點(diǎn)
處作曲線
的切線
與曲線
交于另一點(diǎn)
,在點(diǎn)
處作曲線
的切線
,設(shè)切線
的斜率分別為
.問(wèn):是否存在常數(shù)
,使得
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知曲線y=(a-3)x3+ln x存在垂直于y軸的切線,函數(shù)f(x)=x3-ax2-3x+1在[1,2]上單調(diào)遞增,則a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知函數(shù)
的導(dǎo)函數(shù)圖象如圖所示,若
為銳角三角形,則一定成立的是( )
查看答案和解析>>