已知球心C(1,1,2),球的一條直徑的一個端點(diǎn)為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個端點(diǎn)的坐標(biāo)與表示球面的方程.
解:球的半徑R=AC=,于是,球的表面積為4πR2=20π;球的體積為.因直徑兩端點(diǎn)關(guān)于球心對稱,設(shè)另一端點(diǎn)的坐標(biāo)為(x,y,z),則 =2,z=2. 故直徑的另一個端點(diǎn)的坐標(biāo)為(3,0,2).設(shè)點(diǎn)P(x,y,z)為球面上的任一點(diǎn),則PC=R=,即(x-1)2+(y-1)2+(z-2)2=5,它便表示球面的方程. 思路分析:已知球心和一個端點(diǎn)可求出球的半徑,再利用相應(yīng)公式求出表面積、體積,直徑的另一個端點(diǎn)可由中點(diǎn)坐標(biāo)公式求得,球面的方程可利用其幾何意義得出. |
空間中求曲面、曲線的方程可類比平面內(nèi)的直線、曲線的方程的求法,建系,設(shè)點(diǎn),找動點(diǎn)滿足的幾何關(guān)系,代入坐標(biāo),化簡等步驟. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:設(shè)計必修二數(shù)學(xué)人教A版 人教A版 題型:044
已知球心C(1,1,2),球的一條直徑的一個端點(diǎn)為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個端點(diǎn)的坐標(biāo)與表示球面的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:設(shè)計必修二數(shù)學(xué)人教A版 人教A版 題型:044
已知球心C(1,1,2),球的一條直徑的一個端點(diǎn)為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個端點(diǎn)的坐標(biāo)與表示球面的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:設(shè)計必修二數(shù)學(xué)北師版 北師版 題型:044
已知球心C(1,1,2),球的一條直徑的一個端點(diǎn)為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個端點(diǎn)的坐標(biāo)與表示球面的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com