已知兩點P1(4,9)、P2(6,3),以P1P2為直徑的圓記為圓P,則以下四點的圓P上的是


  1. A.
    M(6,9)
  2. B.
    N(3,3)
  3. C.
    Q(5,3)
  4. D.
    O(0,0)
A
以P1P2為直徑的圓的方程為:(x-5)2+(y-6)2=10.將選項中的各點代入方程便知M(6,9)在圓P上.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:導學大課堂必修二數(shù)學蘇教版 蘇教版 題型:013

已知兩點P1(4,9)、P2(6,3),以P1P2為直徑的圓記為圓P,則以下四點的圓P上的是

[  ]

A.M(6,9)

B.N(3,3)

C.Q(5,3)

D.O(0,0)

查看答案和解析>>

科目:高中數(shù)學 來源:導學大課堂必修二數(shù)學蘇教版 蘇教版 題型:044

已知兩點P1(4,9)和P2(6,3),求以P1P2為直徑的圓C的方程,并進而求圓C上的點P到Q(x0,y0)點的距離d的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:設計必修二數(shù)學北師版 北師版 題型:044

如下圖,已知兩點P1(4,9)和P2(6,3),

(1)求以P1P2為直徑的圓的方程;

(2)試判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上、在圓內、還是在圓外?

(3)求以P1為圓心,|P1P2|為半徑的圓,并判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上、圓內、還是圓外?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知兩點P1(4,9)和P2(6,3),(1)求以P1P2為直徑的圓的方程;(2)試判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上,在圓內,還是在圓外?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點P1(4,9)和P2(6,3),(1)求以P1P2為直徑的圓的方程;(2)試判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上,在圓內,還是在圓外?

查看答案和解析>>

同步練習冊答案