公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4是a3與a7的等比中項(xiàng),S8=32,則S10=   
【答案】分析:設(shè)出等差數(shù)列的等差d,且d不為0,根據(jù)a4是a3與a7的等比中項(xiàng),S8=32,利用等比數(shù)列的性質(zhì)和等差數(shù)列的前n項(xiàng)和的公式化簡(jiǎn)得到關(guān)于等差數(shù)列首項(xiàng)和公差方程組,求出方程組的解集即可得到首項(xiàng)和公差,然后再利用等差數(shù)列的前n項(xiàng)和的公式求出S10即可.
解答:解:設(shè)公差為d(d≠0),則有,化簡(jiǎn)得:,
因?yàn)閐≠0,由①得到2a1+3d=0③,②-③得:4d=8,解得d=2,把d=2代入③求得a1=-3,
所以方程組的解集為,
則S10=10×(-3)+×2=60.
故答案為:60
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等差數(shù)列的前n項(xiàng)和的公式及等比數(shù)列的通項(xiàng)公式化簡(jiǎn)求值,是一道綜合題.本題解法屬基本量法.在解由等差(比)數(shù)列中的部分項(xiàng)生成等比(差)數(shù)列中部分項(xiàng)問(wèn)題時(shí),要特別注意新數(shù)列中項(xiàng)在新、老數(shù)列中的各自屬性及其表示.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比關(guān)系,Sn為{an}的前n項(xiàng)和,則
S3-S2
S5-S3
的值為( 。
A、2
B、3
C、
1
5
D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1=2,且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求數(shù)列{
1Sn
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,則S1,S2,S4成等比數(shù)列.
(1)求數(shù)列S1,S2,S4的公比;
(2)若S2=4,求{an}的通項(xiàng)公式;
(3)在(2)條件下,若bn=an-14,求{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}滿足a2=3,a1,a3,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足bn=
an
an+1
+
an+1
an
,求數(shù)列{bn}的前n項(xiàng)和Sn;
(Ⅲ)設(shè)cn=2n(
an+1
n
-λ)
,若數(shù)列{cn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是公差不為0的等差數(shù)列,a1=2,且a1,a3,a6成等比數(shù)列,則a5的值為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案