已知直線,,

(Ⅰ)求交點(diǎn)的坐標(biāo);

(Ⅱ)求過點(diǎn),且與垂直的直線方程.

 

【答案】

解:(Ⅰ)解方程組 得

交點(diǎn)的坐標(biāo)為.

(Ⅱ)直線的斜率為,所求直線的斜率,所求直線方程為

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l與直線x-2y-1=0垂直,且過點(diǎn)(1,1),則l的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線C1
x=1+
3
2
t
y=
1
2
t
(t為參數(shù)),圓C2
x=cosθ
y=sinθ
(θ為參數(shù)),則C1被C2所截得的弦長為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江門一模)已知直線x-
3
y+
3
=0經(jīng)過橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點(diǎn)B和一個焦點(diǎn)F.
(1)求橢圓的離心率;
(2)設(shè)P是橢圓C上動點(diǎn),求||PF|-|PB||的取值范圍,并求||PF|-|PB||取最小值時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=ax+b,y=bx+a(ab≠0,a≠b),則它們的圖形可能的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=-2與函數(shù)f(x)=tan(ωx+
π
4
)的圖象相鄰兩交點(diǎn)間的距離為
π
2
,將f(x)的圖象向右平移φ(φ>0)個單位后,其圖象關(guān)于原點(diǎn)對稱,則φ的最小值為
π
8
π
8

查看答案和解析>>

同步練習(xí)冊答案