已知橢圓C:=1(a>b>0)的離心率為,其左、右焦點分別是F1、F2,過點F1的直線l交橢圓C于E、G兩點,且△EGF2的周長為4.
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設(shè)P為橢圓上一點,且滿足+=t (O為坐標(biāo)原點),當(dāng)|-|<時,求實數(shù)t的取值范圍.
(1)+y2=1.(2)∪.
【解析】(1)由題意知橢圓的離心率e==,∴e2===,即a2=2b2.
又△EGF2的周長為4,即4a=4,∴a2=2,b2=1.
∴橢圓C的方程為+y2=1.
(2)由題意知直線AB的斜率存在,即t≠0.
設(shè)直線AB的方程為y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由,
得(1+2k2)x2-8k2x+8k2-2=0.
由Δ=64k4-4(2k2+1)(8k2-2)>0,得k2<.
x1+x2=,x1x2=,
∵+=t,∴(x1+x2,y1+y2)=t(x,y),x==,y==[k(x1+x2)-4k]=.
∵點P在橢圓C上,∴+2=2,
∴16k2=t2(1+2k2).
∵|-|<,∴|x1-x2|<,
∴(1+k2)[(x1+x2)2-4x1x2]<,
∴(1+k2) <,
∴(4k2-1)(14k2+13)>0,∴k2>.
∴<k2<.∵16k2=t2(1+2k2),∴t2==8-,
又<1+2k2<2,∴<t2=8-<4,
∴-2<t<-或<t<2,
∴實數(shù)t的取值范圍為∪.
科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知非空集合和,規(guī)定,那么等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:選擇題
已知實數(shù)a,b滿足x1,x2是關(guān)于x的方程x2-2x+b-a+3=0的兩個實根,則不等式0<x1<1<x2成立的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷6練習(xí)卷(解析版) 題型:填空題
右圖是根據(jù)部分城市某年6月份的平均氣溫(單位:℃)數(shù)據(jù)得到的樣本頻率分布直方圖,其中平均氣溫的范圍是[20.5,26.5],樣本數(shù)據(jù)的分組為[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知樣本中平均氣溫低于22.5 ℃的城市個數(shù)為11,則樣本中平均氣溫不低于25.5 ℃的城市個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷6練習(xí)卷(解析版) 題型:選擇題
某苗圃基地為了解基地內(nèi)甲、乙兩塊地種植的同一種樹苗的長勢情況,從兩塊地各隨機抽取了10株樹苗,用莖葉圖表示上述兩組數(shù)據(jù),對兩塊地抽取樹苗的高度的平均數(shù)甲、乙和中位數(shù)y甲、y乙進行比較,下面結(jié)論正確的是( )
A.甲>乙,y甲>y乙 B.甲<乙,y甲<y乙
C.甲<乙,y甲>y乙 D.甲>乙,y甲<y乙
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷5練習(xí)卷(解析版) 題型:解答題
已知圓C經(jīng)過點A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若·=-2,求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷5練習(xí)卷(解析版) 題型:選擇題
已知橢圓E:=1(a>b>0)的右焦點為F(3,0),過點F的直線交E于A,B兩點.若AB的中點坐標(biāo)為(1,-1),則E的方程為( )
A. =1 B.=1 C.=1 D.=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷4練習(xí)卷(解析版) 題型:填空題
如圖,水平放置的三棱柱的側(cè)棱長和底邊長均為2,且側(cè)棱AA1⊥平面A1B1C1,正視圖是邊長為2的正方形,該三棱柱的側(cè)視圖的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷2練習(xí)卷(解析版) 題型:填空題
已知向量a與b的夾角是,且|a|=1,|b|=4,若(2a+λb)⊥a,則實數(shù)λ=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com