如圖,圓柱OO1內(nèi)有一個三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑.

(Ⅰ)證明:平面A1ACC1⊥平面B1BCC1;

(Ⅱ)設(shè)AB=AA1,在圓柱OO1內(nèi)隨機(jī)選取一點,記該點取自三棱柱ABC-A1B1C1內(nèi)的概率為p.

(i)當(dāng)點C在圓周上運(yùn)動時,求p的最大值;

(ii)圭亞那平面A1ACC1與平面B1OC所成的角為(0°≤90°).當(dāng)p取最大值時,求cos的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,圓柱OO1內(nèi)有一個三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑.
(1)證明:平面A1ACC1⊥平面B1BCC1;
(2)設(shè)AB=AA1,在圓柱OO1內(nèi)隨機(jī)選取一點,記該點取自于三棱柱ABC-A1B1C1內(nèi)的概率為P.當(dāng)點C在圓周上運(yùn)動時,記平面A1ACC1與平面B1OC所成的角為θ(0°<θ≤90°),當(dāng)P取最大值時,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓柱OO1內(nèi)有一個三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑.
(1)證明:O1A∥平面B1OC;
(2)證明:平面A1ACC1⊥平面B1BCC1;
(3)設(shè)AB=AA1=2,在圓柱OO1內(nèi)隨機(jī)選取一點,記該點取自于三棱柱ABC-A1B1C1內(nèi)的概率為P,當(dāng)點C在圓周上運(yùn)動時,求P的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓柱OO1內(nèi)有一個三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑,AA1=AC=CB=2.
(Ⅰ)證明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)設(shè)E,F(xiàn)分別為AC,BC上的動點,且CE=BF=x,問當(dāng)x為何值時,三棱錐C-EC1F的體積最大,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓柱OO1內(nèi)有一個三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑.
(1)證明:平面A1ACC1⊥平面B1BCC1;
(2)設(shè)AB=AA1=2,點C為圓柱OO1底面圓周上一動點,記三棱柱ABC-A1B1C1的體積為V.
①求V的最大值;
②記平面A1ACC1與平面B1OC所成的角為θ(0°<θ≤90°),當(dāng)V取最大值時,求cosθ的值;
③當(dāng)V取最大值時,在三棱柱ABC-A1B1C1的側(cè)面A1ACC1內(nèi)(包括邊界)的動點P到直線B1C1的距離等于它到直線AC的距離,求動點P到點C距離|PC|的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓柱OO1內(nèi)有一個三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑.
(I)證明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)設(shè)AB=AA1,在圓柱OO1內(nèi)隨機(jī)選取一點,記該點取自于三棱柱ABC-A1B1C1內(nèi)的概率為P.
(i)當(dāng)點C在圓周上運(yùn)動時,求P的最大值;
(ii)記平面A1ACC1與平面B1OC所成的角為θ(0°≤θ≤90°),當(dāng)P取最大值時,求cosθ的值.

查看答案和解析>>

同步練習(xí)冊答案