已知點與橢圓的兩個焦點構(gòu)成等腰三角形,則橢圓的離心率e=    ▲      

 

【答案】

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足
PA
AB
=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科做)已知點A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b為正常數(shù).
(1)半徑為2的圓C1經(jīng)過Ai(i=1,2,…,5)這五個點,求b和t的值;
(2)橢圓C2以F1(-c,0),F(xiàn)2(c,0)(c>0)為焦點,長軸長是4.若AiF1+AiF2=4(i=1,2,…,5),試用b表示t;
(3)在(2)中的橢圓C2中,兩線段長的差A(yù)1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2構(gòu)成一個數(shù)列{an},求證:對n=1,2,3,4都有an+1<an.(本小題解答中用到了橢圓的第一定義與焦半徑公式,新教材實驗區(qū)的學生可不解第三小題,請學習時注意)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

同步練習冊答案